Thermithiobacillus tepidarius: Difference between revisions
Line 15: | Line 15: | ||
Genus: [https://en.wikipedia.org/wiki/Thermithiobacillus Thermithiobacillus] | Genus: [https://en.wikipedia.org/wiki/Thermithiobacillus Thermithiobacillus] | ||
Species: | Species: Tepidarius | ||
===Description and Significance=== | ===Description and Significance=== |
Revision as of 21:02, 27 April 2020
Classification
Domain: Bacteria
Kingdom: Eubacteria
Phylum: Proteobacteria
Class: Acidithiobacillia
Order: Acidithiobacillales
Family: Thermithiobacillaceae
Genus: Thermithiobacillus
Species: Tepidarius
Description and Significance
Thermithiobacillus tepidarius is a moderate thermophile and an obligate chemolithoautotrophy growing at the expense of reduced sulfur species. The stain was isolated from sulfidic groundwater flowing into a Roman bathhouse and the only other strain of this genus originated from decomposing concrete in the Melbourne sewers in the 1940s. In the past scientists have detected at least 6 OUTs representing other Thermithiobacillus species in 16S rRNA gene libraries from the Roman Baths, and there has been an isolated number of strains to date. This indicates that Thermithiobacillus species are as equally difficult to isolate as other sulfur-oxidizing autotrophs. Therefore, they may be simply rare or confined to ecosystems or environments that are rare.
If grown on thiosulfate-containing basal salts agar, in forty-eight hours T. tepdiarius forms white colonies of 2-5mm in diameter. These colonies smell faintly of elementary sulfur due to their intake of reduced sulfur species.
Genome
T. tepdiarius genome comprises of 2,968 predicted genes, within this strain 2,902 are protein-coding, 66 are RNA coding genes and 2 rRNA operons. This particular strain genome size is 2,958,498 bp-long. There has been evidence of horizontal gene transfer which accounts for roughly 6% of the protein-coding genes found. Including transfer from Methylococcus capsulatus bath and Thiobacillus spp, both isolated from the same spring in which it was found. While testing the strain, a sox gene cluster was found, very similar in its structure to those from other Acidithiobacillia. An additional gene between soxA and soxB was found and annotated as a DUF302-family protein of unknown function. Since the Kelly-Friedrich pathway of thiosulfate oxidation is not used in multiple species of Thermithiobacillus, the role of the operon (if there is any) remains unknown. Compared to other types of species, T. tepidarius DSM 3134 has one of the smallest genomes. Presumably, because T. tepidarius lacks the salt-tolerance system unlike species of Acidithiobacillia spp., Thiobacillus spp. and Halothiobacillus spp. Or even the iron-oxidation or acid-tolerance of multiple Acidithiobacillus species.
Structure, Metabolism
T. terpidarius has an optimum pH of 6.0-7.5. Even with this narrow range in ph, the rod shape cells can continue to grow on an acid medium of pH 4.8. However, they can only occur on reduced inorganic sulfur compounds and elementary sulfur. Unlike other genera of Acidithiobacillus, T. tepidarius and multiple species of Thermithiobacillus are unable to oxidize iron-containing minerals or ferrous iron. This organism uses the carbon dioxide fixation pathway, biosynthesis, and sulfur oxidation as a way to obtain their nutrients.
Ecology and Known Roles in Symbiosis
This microbe will typically be found in environments with pH’s of 6.0-7.5 but can be found within unlikely ecosystems with pHs of 4.8. This particular strain was found in a warm bath fed by natural thermal water, or the thermal groundwaters in Somerset, United Kingdom. Other sulfur-oxidizing autotrophs very similar to T. tepidarius are prevalent in environments hosting both abundant reduced sulfur species and low oxygen concentrations. Environments such as marine sediments, OMZs or oxygen minimum zones and hydrothermal systems.