Thiomargarita namibiensis food storage: Difference between revisions
Line 6: | Line 6: | ||
==Metabolism== | ==Metabolism== | ||
The Thiomargarita namibiensis is capable of using nitrogen as the terminal electron acceptor during the Electron Transport Chain. Throughout this process, it oxidizes hydrogen sulfide (H<sub>2</sub>S)</sub> into elemental sulfur (S<sub>2</sub>). The sulfur molecules are then deposited in their periplasms which provides aid in helping the bacteria give off a white shimmer. Furthermore, this "white" glow allowed for scientists to give it the nickname of "The Sulfur Pearl of Namibia". When the nitrate concentrations in the surrounding environment become low, the Thiomargarita namibiensis uses the excess nutrients that it has stored in its vacuoles instead. In the recent years there has been research done which shows that the Thiomargarita namibiensis is able to go through the respiration process if the oxygen levels are plentiful in its current environment. | The Thiomargarita namibiensis is capable of using nitrogen as the terminal electron acceptor during the Electron Transport Chain. Throughout this process, it oxidizes hydrogen sulfide (H<sub>2</sub>S)</sub> into elemental sulfur (S<sub>2</sub>). The sulfur molecules are then deposited in their periplasms which provides aid in helping the bacteria give off a white shimmer. Furthermore, this "white" glow allowed for scientists to give it the nickname of "The Sulfur Pearl of Namibia". When the nitrate concentrations in the surrounding environment become low, the Thiomargarita namibiensis uses the excess nutrients that it has stored in its vacuoles instead. In the recent years there has been research done which shows that the Thiomargarita namibiensis is able to go through the respiration process if the oxygen levels are plentiful in its current environment. <ref>[https://www.sciencemag.org/news/1999/04/giant-sulfur-eating-microbe-found Bernice Wuethrich "<I>Thiomargarita namibiensis</i> Giant Sulfur-Eating Microbe Found" 1999. PLoS Biology 6:2634-2637.]</ref> | ||
<br><br> | |||
<br><br> | |||
==Section 2 Microbiome== | ==Section 2 Microbiome== |
Revision as of 18:03, 5 December 2020
Introduction
The Thiomargarita namibiensis was discovered in 1997 by Heidi N. Schulz off of the coast of Walvis Bay, Namibia, Africa. The Thiomargarita namibiensis is a sulfide eating bacteria and although it mainly consumes sulfides, the Thiomargarita namibiensis also consumes some amounts of nitrates. The Thiomargarita namibiensis is currently the largest found bacteria (up to 0.3 mm in diameter). A separate strand of the Thiomargarita namibiensis was also found off the coast of the Gulf of Mexico in 2005 but this strand does not does not divide along a single axis and because of that, it is unable to form large chains. The Thiomargarita namibiensis is closely related to a much smaller bacteria called the Thioploca which live in vertical sheaths and have to move up and down in order to get the nutrients that they need. Furthermore, the Thiomargarita namibiensis does not need to do that in order to become completely satiated.
Metabolism
The Thiomargarita namibiensis is capable of using nitrogen as the terminal electron acceptor during the Electron Transport Chain. Throughout this process, it oxidizes hydrogen sulfide (H2S) into elemental sulfur (S2). The sulfur molecules are then deposited in their periplasms which provides aid in helping the bacteria give off a white shimmer. Furthermore, this "white" glow allowed for scientists to give it the nickname of "The Sulfur Pearl of Namibia". When the nitrate concentrations in the surrounding environment become low, the Thiomargarita namibiensis uses the excess nutrients that it has stored in its vacuoles instead. In the recent years there has been research done which shows that the Thiomargarita namibiensis is able to go through the respiration process if the oxygen levels are plentiful in its current environment. [1]
Section 2 Microbiome
Include some current research, with a second image.
Conclusion
Overall text length should be at least 1,000 words (before counting references), with at least 2 images. Include at least 5 references under Reference section.
References
Edited by [Author Name], student of Joan Slonczewski for BIOL 116 Information in Living Systems, 2020, Kenyon College.