Listeria monocytogenes: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 31: Line 31:
==Ecology==
==Ecology==


Due to its evolutionary ties to eukaryotes, Thermoplasma genus can be used as model organism for researches.
Listeria monocytogenes has been found widely distributed throughout the environment, especially in the soil and fecal matter. Studies have shown that infected animals may contribute to Listeria monocytogenes’s dispersal into the environment through animal fecal matter and feedstuff (10). Listeria monocytogenes, as an intracellular pathogen, has been associated with severe foodborne infections in humans and animals, though rarely through raw animal-derived food products (11). Listeria monocytogenes have also been shown to survive in different habitats with extreme conditions including high salt concentrations, high pH, and high temperature (3). Listeria monocytogenes can also form biofilms, which enables them as a community to attach to solid surfaces where they proliferate and become extremely difficult to remove (20).


==Pathology==
==Pathology==

Revision as of 21:30, 4 June 2007

A Microbial Biorealm page on the genus Listeria monocytogenes

Classification

Higher order taxa

Bacteria; Firmicutes; Bacilli; Bacillales; Listeriaceae; Listeria; L.monocytogenes

Species

NCBI: Taxonomy

Listeria Monocytogenes

Description and significance

Listeria monocytogenes are a Gram-positive rod-shaped bacterium that form single short chains (1), and can be resistant to the effects of freezing, drying, and heat (2) surprisingly well for a nonsporeforming bacterium. Listeria are mainly found in the soil, though Listeria monocytogenes, a pathogen, may specifically be found in raw foods, such as pasteurized fluid milk (5), raw vegetables, raw and cooked poultry (4). It has the ability to grow at low temperatures; thus, allowing it to grow in refrigerated foods. Listeria monocytogenes was thought to be exclusively associated as infections in animals, but recently, this pathogenic species has also been isolated, in its dormant form, in the intestinal tract of small percentage of the human population (3). Because Listeria monocytogenes is an agent of listeriosis, a serious disease where the overt form has a severe mortality greater than 25 percent (3), sequencing of the bacterium’s genome is of significant importance. Sequencing the genome of this organism allows for the measurement and study of traits such as new aspects regarding virulence and evolution using comparative genomics and DNA arrays (6). 16S rRNA cataloging studies have also been conducted to demonstrate Listeria monocytogenes’ close relationship to different stains of listeriae, based on genome size, GC-content and other various characters (7), which also helped place the bacterium within the bacterial phylogeny constructed by Woese (3).

Genome structure

The genome of Listeria monocytogenes strain EGD-e is just one of several stains of the bacterium that have been sequenced. Strain EGC-e is 2,944,528 base pairs long with 2853 open reading frames and a GC content of 39% (NCBI). Other strains include the genome of Listeria monocytogenes str.4b F2365, which is 2,905,310 base pairs long with a GC content of 38% (NCBI). Currently the genomes of Listeria monocytogenes str. 1/2a F6854, and Listeria monocytogenes str. 4b H7858 are being sequenced (8). Listeria monocytogenes has a single circular chromosome. The ability of Listeria to inhabit a wide range of environments is paralleled to the presence of 331 genes encoding different transport proteins, comprising 11.6% of the total gene compliment of L. monocytogenes. Listeria also has an extensive regulatory range occupying much of the total genome (8).

Cell structure and metabolism

Listeria monocytogenes do not form spores or branch and are motile via peritrichous flagella at room temperature (20º-25º), but surprisingly cannot synthesize flagella at body temperature (37º) (13). Because Listeria monocytogenes are intercellular pathogens, virulence is associated with the ability of bacteria to move into host cells by polymerization of host cell actin at one end of the bacterium, which helps them propel through cytoplasm. Flagellar motility is used more for existence and spread of the bacteria outside the host environment (9, 13).

Ecology

Listeria monocytogenes has been found widely distributed throughout the environment, especially in the soil and fecal matter. Studies have shown that infected animals may contribute to Listeria monocytogenes’s dispersal into the environment through animal fecal matter and feedstuff (10). Listeria monocytogenes, as an intracellular pathogen, has been associated with severe foodborne infections in humans and animals, though rarely through raw animal-derived food products (11). Listeria monocytogenes have also been shown to survive in different habitats with extreme conditions including high salt concentrations, high pH, and high temperature (3). Listeria monocytogenes can also form biofilms, which enables them as a community to attach to solid surfaces where they proliferate and become extremely difficult to remove (20).

Pathology

There is no known pathogen among different strains of Thermoplasma volcanium.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen and Kit Pogliano