Kryptoperidinium foliaceum: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 34: Line 34:


==References==
==References==
[Sample reference] [http://ijs.sgmjournals.org/cgi/reprint/50/2/489 Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "''Palaeococcus ferrophilus'' gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". ''International Journal of Systematic and Evolutionary Microbiology''. 2000. Volume 50. p. 489-500.]
[Al-Yamani, F., Saburova, M., & Polikarpov, I. (2012, January 1). A preliminary assessment of harmful algal blooms in Kuwait’s marine environment. ''Aquatic Ecosystem Health & Management'', 15(1), 64-72. https://doi.org/10.1080/14634988.2012.679450]
[Bercovici, A., & Vellekoop, J. (2017). Methods in Paleopalynology and Palynostratigraphy: An Application to the K-Pg Boundary. In K. E. Zeigler & W. Parker (Eds.), ''Terrestrial Depositional Systems: Deciphering Complexities Through Multiple Stratigraphic Methods'' (pp. 127-164). Elsevier Science.]
[Culture Collection of Algae and Protozoa. (n.d.). ''Kryptoperidinium foliaceum''. Culture Collection of Algae and Protozoa. Retrieved April 18, 2024, from https://www.ccap.ac.uk/catalogue/strain-1116-3]
[Figueroa, R. I., Bravo, I., Fraga, S., Garces, E., & Llaveria, G. (2009, May). The Life History and Cell Cycle of Kryptoperidinium foliaceum, A Dinoflagellate with Two Eukaryotic Nuclei. ''Protist'', 160(2), 285-300. https://doi.org/10.1016/j.protis.2008.12.003]
[Gagat, P., Bodył, A., Mackiewicz, P., & Stiller, J. W. (2013). Tertiary Plastid Endosymbioses in Dinoflagellates. In W. Löffelhardt (Ed.), ''Endosymbiosis'' (p. 263). Springer Vienna. https://doi.org/10.1007/978-3-7091-1303-5_13]
[Imanian, B., Pombert, e.-F., & Keeling, P. J. (2010, May 19). The Complete Plastid Genomes of the Two ‘Dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. ''PLoS One'', 5(5). https://doi.org/10.1371/journal.pone.0010711]
[Kempton, J. W., Wolny, J., Tengs, T., Rizzo, P., Morris, R., Tunnell, J., Scott, P., Steidinger, K., Hymel, S. N., & Lewitus, A. J. (2002, September 28). Kryptoperidinium foliaceum blooms in South Carolina: a multi-analytical approach to identification. ''Harmful Algae'', 1(1), 387. https://works.bepress.com/torstein/13/]
[WoRMS & Guiry, M. D. (2016, June 26). ''Kryptoperidinium foliaceum (F.Stein) Lindemann, 1924''. World Register of Marine Species. Retrieved April 23, 2024, from https://www.marinespecies.org/aphia.php?p=taxdetails&id=110154]


==Author==
==Author==

Revision as of 00:32, 26 April 2024

This student page has not been curated.

Kryptoperidinium foliaceum.jpeg

Classification

Eukaryota; Sar; Alveolata; Dinophyceae; Peridiniales; Kryptoperidiniaceae; Kryptoperidinium

[Others may be used. Use NCBI link to find]

Species

NCBI: Taxonomy

Kryptoperidinium foliaceum

Description and Significance

The external appearance of this microbe is a round, imperfect circular shape. In color, it appears to be a golden brownish. On the surface, there are many smaller circles, and important to note, there is an eyespot almost exactly in the center. The habitat of this species is typically marine environments, more specifically, areas with a hypersalinic environment, as Kryptoperidinium foliaceum thrives under hypersalinic conditions, although sometimes it can be found in coastal areas and estuaries as well. In fact, Kryptoperidinium foliaceum was first discovered in a hypersaline environment in Kuwait. There was a direct correlation between the saline concentration and the Kryptoperidinium foliaceum population, the higher the saline concentration, the higher the population.

Genome Structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?


Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.


Ecology and Pathogenesis

Kryptoperidinium foliaceum can be found in various regions around the world, including the Mediterranean Sea, the Gulf of Mexico, and the Atlantic and Pacific coasts of North America. It is a common inhabitant of coastal waters, such as shallow water lagoons, estuaries and tidal creeks. K. foliaceum tends to thrive in environments with high salinity levels, but can tolerate a great range of salinities, from fresh and brackish waters up to waters with hypersalinity. The density of the Kryptoperidinium foliaceum population and distribution in many areas has been strongly correlated with a salinity pattern, as higher salinities tend to have a higher population of K. foliaceum. High salinities have also been correlated with Kryptoperidinium foliaceum blooms. These algal blooms are harmful to the fish, invertebrates, and other marine organisms in the regions where they occur. While many dinoflagellate blooms produce toxins, K. foliaceum blooms do not, and instead cause noxious odors and kill fish and other organisms by depleting the water of its dissolved oxygen.

References

[Al-Yamani, F., Saburova, M., & Polikarpov, I. (2012, January 1). A preliminary assessment of harmful algal blooms in Kuwait’s marine environment. Aquatic Ecosystem Health & Management, 15(1), 64-72. https://doi.org/10.1080/14634988.2012.679450] [Bercovici, A., & Vellekoop, J. (2017). Methods in Paleopalynology and Palynostratigraphy: An Application to the K-Pg Boundary. In K. E. Zeigler & W. Parker (Eds.), Terrestrial Depositional Systems: Deciphering Complexities Through Multiple Stratigraphic Methods (pp. 127-164). Elsevier Science.] [Culture Collection of Algae and Protozoa. (n.d.). Kryptoperidinium foliaceum. Culture Collection of Algae and Protozoa. Retrieved April 18, 2024, from https://www.ccap.ac.uk/catalogue/strain-1116-3] [Figueroa, R. I., Bravo, I., Fraga, S., Garces, E., & Llaveria, G. (2009, May). The Life History and Cell Cycle of Kryptoperidinium foliaceum, A Dinoflagellate with Two Eukaryotic Nuclei. Protist, 160(2), 285-300. https://doi.org/10.1016/j.protis.2008.12.003] [Gagat, P., Bodył, A., Mackiewicz, P., & Stiller, J. W. (2013). Tertiary Plastid Endosymbioses in Dinoflagellates. In W. Löffelhardt (Ed.), Endosymbiosis (p. 263). Springer Vienna. https://doi.org/10.1007/978-3-7091-1303-5_13] [Imanian, B., Pombert, e.-F., & Keeling, P. J. (2010, May 19). The Complete Plastid Genomes of the Two ‘Dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS One, 5(5). https://doi.org/10.1371/journal.pone.0010711] [Kempton, J. W., Wolny, J., Tengs, T., Rizzo, P., Morris, R., Tunnell, J., Scott, P., Steidinger, K., Hymel, S. N., & Lewitus, A. J. (2002, September 28). Kryptoperidinium foliaceum blooms in South Carolina: a multi-analytical approach to identification. Harmful Algae, 1(1), 387. https://works.bepress.com/torstein/13/] [WoRMS & Guiry, M. D. (2016, June 26). Kryptoperidinium foliaceum (F.Stein) Lindemann, 1924. World Register of Marine Species. Retrieved April 23, 2024, from https://www.marinespecies.org/aphia.php?p=taxdetails&id=110154]

Author

Page authored by Harini Sunder and Hunter Trier, students of Prof. Jay Lennon at Indiana University.