Kryptoperidinium foliaceum: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 29: Line 29:


==Ecology and Pathogenesis==
==Ecology and Pathogenesis==
''Kryptoperidinium foliaceum'' can be found in various regions around the world, including the Mediterranean Sea, the Gulf of Mexico, and the Atlantic and Pacific coasts of North America. It is a common inhabitant of coastal waters, such as shallow water lagoons, estuaries and tidal creeks. ''K. foliaceum'' tends to thrive in environments with high salinity levels, but can tolerate a great range of salinities, from fresh and brackish waters up to waters with hypersalinity. The density of the ''Kryptoperidinium foliaceum'' population and distribution in many areas has been strongly correlated with a salinity pattern, as higher salinities tend to have a higher population of ''K. foliaceum''.  
''Kryptoperidinium foliaceum'' can be found in various regions around the world, including the Mediterranean Sea, the Gulf of Mexico, and the Atlantic and Pacific coasts of North America. It is a common inhabitant of coastal waters, such as shallow water lagoons, estuaries and tidal creeks. ''K. foliaceum'' tends to thrive in environments with high salinity levels, but can tolerate a great range of salinities, from fresh and brackish waters up to waters with hypersalinity. The density of the ''Kryptoperidinium foliaceum'' population and distribution in many areas has been strongly correlated with a salinity pattern, as higher salinities tend to have a higher population of ''K. foliaceum''. [1]
High salinities have also been correlated with ''Kryptoperidinium foliaceum'' blooms. These algal blooms are harmful to the fish, invertebrates, and other marine organisms in the regions where they occur. While many dinoflagellate blooms produce toxins, ''K. foliaceum'' blooms do not, and instead cause noxious odors and kill fish and other organisms by depleting the water of its dissolved oxygen.
High salinities have also been correlated with ''Kryptoperidinium foliaceum'' blooms. These algal blooms are harmful to the fish, invertebrates, and other marine organisms in the regions where they occur. While many dinoflagellate blooms produce toxins, ''K. foliaceum'' blooms do not, and instead cause noxious odors and kill fish and other organisms by depleting the water of its dissolved oxygen.
<br><br>
<br><br>

Revision as of 01:08, 26 April 2024

This student page has not been curated.

Kryptoperidinium foliaceum.jpeg

Classification

Eukaryota; Sar; Alveolata; Dinophyceae; Peridiniales; Kryptoperidiniaceae; Kryptoperidinium

[Others may be used. Use NCBI link to find]

Species

NCBI: Taxonomy

Kryptoperidinium foliaceum

Description and Significance

The external appearance of this microbe is a round, imperfect circular shape. In color, it appears to be a golden brownish. On the surface, there are many smaller circles, and important to note, there is an eyespot almost exactly in the center. The habitat of this species is typically marine environments, more specifically, areas with a hypersalinic environment, as Kryptoperidinium foliaceum thrives under hypersalinic conditions, although sometimes it can be found in coastal areas and estuaries as well. In fact, Kryptoperidinium foliaceum was first discovered in a hypersaline environment in Kuwait. There was a direct correlation between the saline concentration and the Kryptoperidinium foliaceum population, the higher the saline concentration, the higher the population.

Genome Structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?


Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces. Interesting facts regarding the cell structure of K. foliaceum include that it is a binucleate dinoflagellate, and that the endosymbiont nucleus is a diatom. Another interesting fact to be noted is that the endosymbiont is a tertiary endosymbiont, meaning a secondary plastid that contains an algae has been engulfed by a heterotrophic eukaryote. K. foliaceum, like many other dinoflagellates, gains energy through photosynthesis. The important molecules that are produced include

Ecology and Pathogenesis

Kryptoperidinium foliaceum can be found in various regions around the world, including the Mediterranean Sea, the Gulf of Mexico, and the Atlantic and Pacific coasts of North America. It is a common inhabitant of coastal waters, such as shallow water lagoons, estuaries and tidal creeks. K. foliaceum tends to thrive in environments with high salinity levels, but can tolerate a great range of salinities, from fresh and brackish waters up to waters with hypersalinity. The density of the Kryptoperidinium foliaceum population and distribution in many areas has been strongly correlated with a salinity pattern, as higher salinities tend to have a higher population of K. foliaceum. [1] High salinities have also been correlated with Kryptoperidinium foliaceum blooms. These algal blooms are harmful to the fish, invertebrates, and other marine organisms in the regions where they occur. While many dinoflagellate blooms produce toxins, K. foliaceum blooms do not, and instead cause noxious odors and kill fish and other organisms by depleting the water of its dissolved oxygen.

References

[1]Al-Yamani, F., Saburova, M., & Polikarpov, I. (2012, January 1). A preliminary assessment of harmful algal blooms in Kuwait’s marine environment. Aquatic Ecosystem Health & Management, 15(1), 64-72.

[2]Bercovici, A., & Vellekoop, J. (2017). Methods in Paleopalynology and Palynostratigraphy: An Application to the K-Pg Boundary. In K. E. Zeigler & W. Parker (Eds.), Terrestrial Depositional Systems: Deciphering Complexities Through Multiple Stratigraphic Methods (pp. 127-164). Elsevier Science.

[3]Culture Collection of Algae and Protozoa. (n.d.). Kryptoperidinium foliaceum. Culture Collection of Algae and Protozoa.

[4]Figueroa, R. I., Bravo, I., Fraga, S., Garces, E., & Llaveria, G. (2009, May). The Life History and Cell Cycle of Kryptoperidinium foliaceum, A Dinoflagellate with Two Eukaryotic Nuclei. Protist, 160(2), 285-300.

[5]Gagat, P., Bodył, A., Mackiewicz, P., & Stiller, J. W. (2013). Tertiary Plastid Endosymbioses in Dinoflagellates. In W. Löffelhardt (Ed.), Endosymbiosis (p. 263). Springer Vienna.

[6]Imanian, B., Pombert, J.-F., & Keeling, P. J. (2010, May 19). The Complete Plastid Genomes of the Two ‘Dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS One, 5(5).

[7]Kempton, J. W., Wolny, J., Tengs, T., Rizzo, P., Morris, R., Tunnell, J., Scott, P., Steidinger, K., Hymel, S. N., & Lewitus, A. J. (2002, September 28). Kryptoperidinium foliaceum blooms in South Carolina: a multi-analytical approach to identification. Harmful Algae, 1(1), 387.

[8]WoRMS & Guiry, M. D. (2016, June 26). Kryptoperidinium foliaceum (F.Stein) Lindemann, 1924. World Register of Marine Species.

Author

Page authored by Harini Sunder and Hunter Trier, students of Prof. Jay Lennon at Indiana University.