Oleispira antarctica: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
Line 43: Line 43:
Interesting features of cell structure; how it gains energy; what important molecules it produces.
Interesting features of cell structure; how it gains energy; what important molecules it produces.


O. antarctica are aerobic bacteria that are chemoorganoheterotrophs that grow in aliphatic alkanes which are hydrocarbons made up of single covalent bonds (Gregson et al., 2020). They are able to degrade hydrocarbons such as Deisel for energy (Gentile et al., 2016).
O. antarctica is a species of aerobic bacteria that are chemoorganoheterotrophs that grow in aliphatic alkanes which are hydrocarbons made up of single covalent bonds (Gregson et al., 2020). They are able to degrade hydrocarbons such as Deisel for energy (Gentile et al., 2016).


==Ecology and Pathogenesis==
==Ecology and Pathogenesis==

Revision as of 00:08, 19 November 2024

{Uncurated}}

Oleispira antarctica. International Journal of Systematic and Evolutionary Microbiology vol 53(3).


Classification

cellular organisms; Bacteria; Pseudomonadati; Pseudomonadota; Gammaproteobacteria; Oceanospirillales; Oceanospirillaceae


Species

NCBI: [1]


Genus species

Description and Significance

Describe the appearance, habitat, etc. of the organism, and why you think it is important.


Genome Structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?


Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.

O. antarctica is a species of aerobic bacteria that are chemoorganoheterotrophs that grow in aliphatic alkanes which are hydrocarbons made up of single covalent bonds (Gregson et al., 2020). They are able to degrade hydrocarbons such as Deisel for energy (Gentile et al., 2016).

Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment.

If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.


References

Gentile G, Bonsignore M, Santisi S, Catalfamo M, Giuliano L, Genovese L, Yakimov MM, Denaro R, Genovese M, Cappello S. 2016. Biodegradation potentiality of psychrophilic bacterial strain oleispira antarctica RB-8 T. Marine Pollution Bulletin 105:125–130.

Gregson BH, Metodieva G, Metodiev MV, Golyshin PN, McKew BA. 2020. Protein expression in the obligate hydrocarbon‐degrading psychrophile oleispira antarctica RB‐8 during alkane degradation and cold tolerance. Environmental Microbiology 22:1870–1883.

Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham W-R, Lünsdorf H, Timmis KN, Golyshin PN. 2003. Oleispira Antarctica gen. Nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic Coastal Sea Water. International Journal of Systematic and Evolutionary Microbiology 53:779–785.

Author

Page authored by Trinity O'Neal, Kaliany Vazquez, Savion Powell, & Dylan Price, students of Prof. Bradley Tolar at UNC Wilmington.