Lymphocryptovirus: Difference between revisions
No edit summary |
|||
Line 39: | Line 39: | ||
==Cell Structure, Metabolism and Life Cycle== | ==Cell Structure, Metabolism and Life Cycle== | ||
Similar to other members of the Gammaherpesvirinae subfamily, Lymphocryptovirus particles are enveloped and ~120-200 nm in diameter. The virus has an icosahedral capsid, tegument layer, and a glycoprotein embedded lipid envelop for host cell entry. (Johanson et all., 2004 ; Epstein et al., 1964) The double-stranded DNA is packaged with the capsid. | |||
Lymphocryptovirus is metabolically dependent on its host, hijacking cellular pathways to replicate. The virus t enhances glycolysis and glutaminolysis during infection to support its replication. | |||
The life cycle of Lymphocryptovirus alternates between lytic and latent phases. In lytic replication, the virus produces progeny in epithelial cells. In latent phases, it persist as a circular episome with minimum gene expression to avoid immune detection (Thorley-Lawson & Gross, 2004). Host specificity is mediated by interaction between viral glycoproteins and receptors like CD21 (Finegeroth et al., 1984). | |||
==Ecology and Pathogenesis== | ==Ecology and Pathogenesis== |
Revision as of 22:05, 28 November 2024
thumb|300px|right|Legend. Image credit: Name or Publication.
Classification
Virus; Peploviricota; Herviviricetes; Herpesvirales; Orthoherpesviridae
Species
NCBI: [1] |
Lymphocryptovirus
Description and Significance
Lymphocryptovirus is a virus that can affect primates and has an icosahedral capsid. This virus is also commonly known as Epstein-Barr virus. This virus can have long term effects on humans and can cause many other health problems in the future if infected by. There is no cure for this virus, but research has found that in later stages it is linked to cancer found in the lymphatic system. It is mostly spread through oral saliva or an infected object.
Genome Structure
This genome is linear, double-stranded DNA and approximately 170 kilobases in size. The genome is contained into a single chromosome which encodes over 80 genes. The genome sequence contains terminal repeats that facilitate circularization during latency, allowing it to persist as an episome within the host cell nucleus.
Cell Structure, Metabolism and Life Cycle
Similar to other members of the Gammaherpesvirinae subfamily, Lymphocryptovirus particles are enveloped and ~120-200 nm in diameter. The virus has an icosahedral capsid, tegument layer, and a glycoprotein embedded lipid envelop for host cell entry. (Johanson et all., 2004 ; Epstein et al., 1964) The double-stranded DNA is packaged with the capsid.
Lymphocryptovirus is metabolically dependent on its host, hijacking cellular pathways to replicate. The virus t enhances glycolysis and glutaminolysis during infection to support its replication.
The life cycle of Lymphocryptovirus alternates between lytic and latent phases. In lytic replication, the virus produces progeny in epithelial cells. In latent phases, it persist as a circular episome with minimum gene expression to avoid immune detection (Thorley-Lawson & Gross, 2004). Host specificity is mediated by interaction between viral glycoproteins and receptors like CD21 (Finegeroth et al., 1984).
Ecology and Pathogenesis
Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
References
Author
Page authored by Finley Walker, Molly Cooper, Brooklyn Justice, & Kandace Stephenson, students of Prof. Bradley Tolar at UNC Wilmington.