Pyrobaculum islandicum: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 42: Line 42:
''Pyrobaculum islandicum'' belongs to a family of hyperthermophilic archaebacteria found in continental solfataric springs.  Before their discovery, hyperthermophilic bacteria growing at 100°C and above had been isolated exclusively from submarine hydrothermal systems.  The surface layer of the solfataras, typically 30 cm thick, is usually rich in sulfate and is relatively acidic (pH 0.5-6).  Ferric ion compounds cause a rusty appearance.  As you go deeper, the solfataras are usually less acidic and can even be neutral (pH 5-7).  Depending on the altitude above sea level, the temperatures can be as high as 100°C.  Man-made hot environments can also sometimes serve as suitable environments for hyperthermophiles, such as the boiling outflows of geothermal power plants.  Due to the low solubility of oxygen at high temperatures and the presence of reducing gases, most biotopes of hyperthermophiles are anaerobic.  [1][3][4]
''Pyrobaculum islandicum'' belongs to a family of hyperthermophilic archaebacteria found in continental solfataric springs.  Before their discovery, hyperthermophilic bacteria growing at 100°C and above had been isolated exclusively from submarine hydrothermal systems.  The surface layer of the solfataras, typically 30 cm thick, is usually rich in sulfate and is relatively acidic (pH 0.5-6).  Ferric ion compounds cause a rusty appearance.  As you go deeper, the solfataras are usually less acidic and can even be neutral (pH 5-7).  Depending on the altitude above sea level, the temperatures can be as high as 100°C.  Man-made hot environments can also sometimes serve as suitable environments for hyperthermophiles, such as the boiling outflows of geothermal power plants.  Due to the low solubility of oxygen at high temperatures and the presence of reducing gases, most biotopes of hyperthermophiles are anaerobic.  [1][3][4]


When the new genus "''Pyrobaculum''" was first isolated, samples were obtained from an outflow of superheated water of an overpressure valve at the Kafla geothermal power plant and from the Hveragerthi solfatara field (both of which are in Iceland), from the Ribeira Quente solfataras in Azores, and Pisciarelli Solfatara in Italy.  The superheated or almost boiling anaerobic solfataric waters from which the organisms were isolated were neutral to slightly alkaline (pH 5-7).  ''Pb. islandicum's'' low salt tolerance makes them well adapted to the low salt content of the solfataric springs (0-0.5% NaCl), and appears to explain why they are unable to grow within the salty ocean waters of submarine hydrothermal systems.
When the new genus "''Pyrobaculum''" was first isolated, samples were obtained from an outflow of superheated water of an overpressure valve at the Kafla geothermal power plant and from the Hveragerthi solfatara field (both of which are in Iceland), from the Ribeira Quente solfataras in Azores, and Pisciarelli Solfatara in Italy.  The superheated or almost boiling anaerobic solfataric waters from which the organisms were isolated were neutral to slightly alkaline (pH 5-7).  ''Pb. islandicum's'' low salt tolerance makes them well adapted to the low salt content of the solfataric springs (0-0.5% NaCl), and appears to explain why they are unable to grow within the salty ocean waters of submarine hydrothermal systems. [1]
 
 
'''Significance'''


==Genome structure==
==Genome structure==

Revision as of 07:13, 29 August 2007

A Microbial Biorealm page on the genus Pyrobaculum islandicum

Classification

Higher order taxa

Domain: Archaea

Phylum: Crenarchaeota

Class: Thermoprotei

Order: Thermoproteales

Family: Thermoproteaceae

Genus: Pyrobaculum

Species

NCBI: Taxonomy

Pyrobaculum islandicum

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Pyrobaculum islandicum (DSM 4184) is a rod-shaped hyperthermophilic neutrophilic archaebacteria which was first obtained from boiling sulfataric and geothermal waters in Iceland. The latin root of the name "Pyrobaculum" literally means "firestick", where the syllable "pyro" serves to denote the organism's ability to grow at temperatures above 100°C. The species name "islandicum" denotes Icelandic in relevance to its origin of isolation. [1]


Appearance:

Pyrobaculum islandicum are a gram-negative rod-shaped organism with almost rectangular ends. Cells are usually about 2.5 μm long and exhibit bipolar polytrichous flagellation, each flagellum up to 15 μm long and about 13 nm in width. They occur singly and in V-, X-, and raft-shaped aggregates. They can sometimes be seen with terminal spheres (commonly referred to as "golf-club" structures), which appear during its exponential growth phase. No septa formation has yet been observed during cell division. Pb. islandicum colonies are grey or greenish-black in color. [1]


Habitat/Biotope:

Pyrobaculum islandicum belongs to a family of hyperthermophilic archaebacteria found in continental solfataric springs. Before their discovery, hyperthermophilic bacteria growing at 100°C and above had been isolated exclusively from submarine hydrothermal systems. The surface layer of the solfataras, typically 30 cm thick, is usually rich in sulfate and is relatively acidic (pH 0.5-6). Ferric ion compounds cause a rusty appearance. As you go deeper, the solfataras are usually less acidic and can even be neutral (pH 5-7). Depending on the altitude above sea level, the temperatures can be as high as 100°C. Man-made hot environments can also sometimes serve as suitable environments for hyperthermophiles, such as the boiling outflows of geothermal power plants. Due to the low solubility of oxygen at high temperatures and the presence of reducing gases, most biotopes of hyperthermophiles are anaerobic. [1][3][4]

When the new genus "Pyrobaculum" was first isolated, samples were obtained from an outflow of superheated water of an overpressure valve at the Kafla geothermal power plant and from the Hveragerthi solfatara field (both of which are in Iceland), from the Ribeira Quente solfataras in Azores, and Pisciarelli Solfatara in Italy. The superheated or almost boiling anaerobic solfataric waters from which the organisms were isolated were neutral to slightly alkaline (pH 5-7). Pb. islandicum's low salt tolerance makes them well adapted to the low salt content of the solfataric springs (0-0.5% NaCl), and appears to explain why they are unable to grow within the salty ocean waters of submarine hydrothermal systems. [1]


Significance

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen