Thermofilum pendens: Difference between revisions
Line 27: | Line 27: | ||
Metabolism | Metabolism | ||
This organism is heterotrophic and uses Sulfur, through complex organic compounds, to gain energy (2, 3). Elemental sulfur and peptides, from polar lipid of T. tenax, is reduced yielding CO2 and H2S (3). Polar lipid is assume to be rich in sulfur which is most likely broken down and converted into energy. Since T. pendens is an older organism, according to the parsimonious phylogenetic tree, its metabolism is not one of the best. Converting elemental sulfur can only yield a maximum of 27 kJ/mol e- (9). | This organism is heterotrophic and uses Sulfur, through complex organic compounds, to gain energy (2, 3). Elemental sulfur and peptides, from polar lipid of T. tenax, is reduced yielding CO2 and H2S (3). Polar lipid is assume to be rich in sulfur which is most likely broken down and converted into energy. Since T. pendens is an older organism, according to the parsimonious phylogenetic tree, its metabolism is not one of the best. Converting elemental sulfur can only yield a maximum of 27 kJ/mol e- (9). | ||
Revision as of 10:39, 29 August 2007
A Microbial Biorealm page on the genus Thermofilum pendens
Classification
Higher order taxa
Archaea; Crenarchaeota; Thermoprotei; Thermoproteales; Thermofilaceae [Others may be used. Use NCBI link to find]
Species
NCBI: Taxonomy |
Thermofilum pendens, Thermofilum pendens Hrk 5
Description and significance
Thermofilum pendens was first isolated from a solfataric hot spring in Iceland in the early 1980s by Wolfram Zillig (1,10). Since its discovery, T. pendens have also been isolated in solfatara environments, such as Yellowstone National Park (U.S.) and Vulcano Island (Italy). Thus, this archeabacteria can sustain life in a hot and slightly acidic environment making it a hyperthermophile and acidophile, or a thermoacidophile (2). Its optimum growth conditions are 85-90 degree C with a pH of 5-6 and 0.1 – 2% salinity (3, 7). However, it has been found in sites with temperature ranging from 67 -93 degree C and pH ranging from 2.8 - 7.6 (9). Being an archea, T. pendens has the ability to provide heat resistance enzymes which can be applied in biotechnology.
Furthermore, T. pendens is important to the evolutionary process because it the deepest branching lineage to the Eukaryote domain (6). According to a parsimonious phylogenetic tree for 16S rRNA, T. pendens is the out-group of the Crenarchaeota making it the closest evolutionary branch to the Eurakyota domain (7,9). Hence, newly sequenced organisms are compared to T. pendens’ genomes.
Genome structure
Thermofilum pendens has a circular chromosome with 1,781,889 base pairs. Out of the 1.8 Mbp, 57.67 % is G+C content, which is equivalent to 1,027,615 base pairs. It has 1,879 genes in the chromosome and 1,824 genes are protein coding and 40 are structural RNA. It also has one sequenced plasmid with 31,504 base pairs; of which 56.5% is GC content (2). The importance of the plasmid is not yet known.
Cell structure and metabolism
T. pendens is a Gram negative, rod-shaped, non-motile, anaerobic organism. It has an S-layer surrounding the cytoplasmic membrane. During cell division, T. pendens will bud and septum formation does not occur. It is within the Thermofilaceae family which have the general shape of a thin rod, between 0.15 to 0.35 μm in diameter and 1 to >100 μm in length. An interesting feature of this organism is it has a long filamentous structure which can be 100 mm in length (3). However, out of the 9 member of the Genera, Thermofilum is the smallest. Hence, it can be difficult to recognize under the phase contrast light microscope (11). The cell membrane of Thermofilum, as well as other thermophilic archaebacteria, is found to have C20 phytanyl chains and C40 biphytanyl chains. Glycerol-dialkyl-glycerol-tetraethers, aka GDGT, is bridged by two sn-2,3-glycerol moieties through ether linkages by two isoprenoid C40 diols (4). This allows for cell stability in high heat.
Metabolism
This organism is heterotrophic and uses Sulfur, through complex organic compounds, to gain energy (2, 3). Elemental sulfur and peptides, from polar lipid of T. tenax, is reduced yielding CO2 and H2S (3). Polar lipid is assume to be rich in sulfur which is most likely broken down and converted into energy. Since T. pendens is an older organism, according to the parsimonious phylogenetic tree, its metabolism is not one of the best. Converting elemental sulfur can only yield a maximum of 27 kJ/mol e- (9).
Ecology
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
Pathology
Currently, this organism is not pathogenic.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
References
1) Richardson P., Anderson I., Woese C., Olsen G., Reich C. “Thermofilum pendens Hrk 5: finished genome”. JGI (Joint Genome Institute). <http://genome.jgi-psf.org/finished_microbes/thepe/thepe.home.html>.
2) NCBI. “Thermofilum pendens Hrk 5 project at DOE Joint Genome Institute”. <http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=16331>.
3) Lowe S., Jain M., Zeikus G., “Biology, Ecology, and Biotechnological Applications of Anaerobic Bacteria Adapted to Environmental Stresses in Temperature, pH, Salinity, or Substrates”. American Society for Microbiology – Microbiological Reviews. June, 1993. p. 451-509.
4) Rosa M., Gambacorta A., Gliozzi A. “Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids”. American Society for Microbiology – Microbiological Reviews. March 1986. p. 70-80.
5) Kjems, J., Leffers H., Olesen T., Garrett R. “A Unique tRNA Intron in the Variable Loop of the Extreme Thermophile Thermofilum pendens and Its Possible Evolutionary Implications”. The American Society for Biochemistry and Molecular Biology – The Journal of Biological Chemistry. October 25, 1989.
6) Gao B., Gupta R. “Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis”. Biomed Central Genomics. 29 March 2007.
7) Huber, Harald. “Crenarchaeota”. Wiley InterScience – Encyclopedia of Life Sciences. April 24, 2006. < http://mrw.interscience.wiley.com/emrw/9780470015902/els/article/a0000453/current/pdf>.
8) Burggraf S., Huber H. Stetter K. O. “Reclassification of the Crenarchaeal Orders and Families in Accordance with 16S rRNA Sequence Data. Internation Journal of Systematic Bacteriology. July 1997. p. 657 -660. < http://ijs.sgmjournals.org/cgi/reprint/47/3/657.pdf>.
9) Rogers K., Amend J. “Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology. December 2005. p. 319-332. < http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1472-4669.2006.00064.x?cookieSet=1>.
Edited by Quan Pham student of Rachel Larsen