Pyrococcus abyssi: Difference between revisions
Line 14: | Line 14: | ||
|} | |} | ||
Pyrococcus abyssi | |||
==Description and significance== | ==Description and significance== |
Revision as of 17:13, 3 May 2007
A Microbial Biorealm page on the genus Pyrococcus abyssi
Classification
Higher order taxa
Domain; Phylum; Class; Order; family [Others may be used. Use NCBI link to find]
Species
NCBI: Taxonomy |
Pyrococcus abyssi
Description and significance
Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.
This organism was isolated from deep sea hydrothermal vents. The medium used to culture this archaea was of complex carbon sources since it does not grow well on simple carbohydrates. The sequencing of P. abyssi genome provides researcher's with a model of archaea DNA replication and gene expression.
Genome structure
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?
Cell structure and metabolism
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
Ecology
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
Pathology
There is currently no known disease associated with Pyrococcus abyssi.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.
References
Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Querellou J, Ripp R, Thierry JC, Van der Oost J, Weissenbach J, Zivanovic Y, Forterre P. "An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi". Molecular Microbiology. 2003 Mar;47(6):1495-512.
http://aem.asm.org/cgi/reprint/61/3/1138 Minimal Amino Acid Requirements of the Hyperthermophilic Archaeon Pyrococcus abyssi, Isolated from Deep-Sea Hydrothermal Vents Appl. Environ. Microbiol., Mar 1995, 1138-1140, Vol 61, No. 3 Copyright © 1995, American Society for Microbiology
Edited by Stephine Chow