Pyrococcus abyssi: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 42: Line 42:
==Current Research==
==Current Research==


Enter summaries of the most recent research here--at least three required
 


The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.
The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.

Revision as of 17:15, 3 May 2007

A Microbial Biorealm page on the genus Pyrococcus abyssi

Classification

Higher order taxa

Domain; Phylum; Class; Order; family [Others may be used. Use NCBI link to find]

Species

NCBI: Taxonomy

Pyrococcus abyssi

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

This organism was isolated from deep sea hydrothermal vents. The medium used to culture this archaea was of complex carbon sources since it does not grow well on simple carbohydrates. The sequencing of P. abyssi genome provides researcher's with a model of archaea DNA replication and gene expression.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

There is currently no known disease associated with Pyrococcus abyssi.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.

A minimal growth medium containing only nine amino acids and vitamins as the sole carbon and energy sources allowed the growth of Pyrococcus abyssi GE 5, a novel hyperthermophilic sulfur-metabolizing archaeon isolated from deep-sea hydrothermal vents. The generation time in this medium was about 40 min, and cell densities up to 5 x 10(sup8) cells ml(sup-1) were attained. These results are similar to those obtained previously with complex proteinaceous media.

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.


Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Querellou J, Ripp R, Thierry JC, Van der Oost J, Weissenbach J, Zivanovic Y, Forterre P. "An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi". Molecular Microbiology. 2003 Mar;47(6):1495-512.

http://aem.asm.org/cgi/reprint/61/3/1138 Minimal Amino Acid Requirements of the Hyperthermophilic Archaeon Pyrococcus abyssi, Isolated from Deep-Sea Hydrothermal Vents Appl. Environ. Microbiol., Mar 1995, 1138-1140, Vol 61, No. 3 Copyright © 1995, American Society for Microbiology

Edited by Stephine Chow