Aeropyrum pernix: Difference between revisions
Line 28: | Line 28: | ||
==Cell structure and metabolism== | ==Cell structure and metabolism== | ||
The cell envelope of Aeropyrum pernix is a S-layer and is Gram-negative. S-layers, which are found mostly on Archaea, consists of proteins in a crystallized pattern which serves a way for cells to protect themselves. An interesting feature of Aeropyrum pernix is that it does not require sulfur containing compounds for growth and so it does not generate any H2S during growth. It is a heterotropth that uses various types of amino acids and sugars. It uses aerobic degradation of complex porteinaceous substrates for energy and grows optimally at 90 degrees C. The ligopeptide transport systems, such as the dependent ATP-binding cassette (ABC) transporters, help these nutrients to sustain growth | The cell envelope of Aeropyrum pernix is a S-layer and is Gram-negative. S-layers, which are found mostly on Archaea, consists of proteins in a crystallized pattern which serves a way for cells to protect themselves. An interesting feature of Aeropyrum pernix is that it does not require sulfur containing compounds for growth and so it does not generate any H2S during growth. It is a heterotropth that uses various types of amino acids and sugars. It uses aerobic degradation of complex porteinaceous substrates for energy and grows optimally at 90 degrees C. The ligopeptide transport systems, such as the dependent ATP-binding cassette (ABC) transporters, help these nutrients to sustain growth [3]. The ABC transporters facilitate the uptake of essential nutrients. | ||
==Ecology== | ==Ecology== |
Revision as of 19:44, 4 June 2007
A Microbial Biorealm page on the genus Aeropyrum pernix
Classification
Higher order taxa
Archaea; Crenarchaeota; Thermoprotei; Desulfurococcales; Desulfurococcaceae, Desulfurococcaceae; Aeropyrum [Others may be used. Use NCBI link to find]
Species
NCBI: Taxonomy |
Aeropyrum pernix
Description and significance
The Aeropyrum pernix is an aerobic archaeon and is spherical in shape with a diameter of about 1 micro meters. It grows optimally at pH 7.0 and at a temperature of 95 degrees celcius and a salinity of 3.5%. This archaeon is important enough to have its genome sequenced because it can help answer how the Aeropyrum pernix is able to consume oxygen in such an extreme environment. Only anaerobic Archaea was found in such living conditions, until the discovery of the Aeropyrum pernix. Aeropyrum pernix was isolated at a hydrothermal vent at kodakara island in Kagoshima Prefecture by a team of researchers at Kyoto University in 1993. The whole genome was sequenced by using the shotgun sequencing approach. Include a picture or two (with sources) if you can find them.
Genome structure
The genome is composed of 1,669,695 base pairs and contains 14 tRNA genes with introns, like the P. horikoshii’s genome (anaerobic archaen). It has a single circular chromosome. Some interesting features of this genome is that all the genes in the TCA cycle were found except for the alpha-ketoglutarate dehydrogenase gene and instead two sets of genes coding for the subunits of 2-oxoacid:ferredoxin oxidereductase were found in its place. One set is encoded in ORF’s ape2126 and ape2128 and the other in ape1473 and ape1472. These enzymes uses pyruvate as a main substrate. Through sequence comparison among the assigned ORFs, most of the ORFs in the Aeropyrum pernix were generated by a sequence duplication. Around 89.12% of the whole genome consisted of RNA coding regions and the assigned ORF. The GC genome content is 67%
[1]
[2]
Cell structure and metabolism
The cell envelope of Aeropyrum pernix is a S-layer and is Gram-negative. S-layers, which are found mostly on Archaea, consists of proteins in a crystallized pattern which serves a way for cells to protect themselves. An interesting feature of Aeropyrum pernix is that it does not require sulfur containing compounds for growth and so it does not generate any H2S during growth. It is a heterotropth that uses various types of amino acids and sugars. It uses aerobic degradation of complex porteinaceous substrates for energy and grows optimally at 90 degrees C. The ligopeptide transport systems, such as the dependent ATP-binding cassette (ABC) transporters, help these nutrients to sustain growth [3]. The ABC transporters facilitate the uptake of essential nutrients.
Ecology
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
References
[1] Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1.
[2] Gene expression and characterization of two 2-oxoacid:ferredoxin oxidoreductases from Aeropyrum pernix K1.
[3] Identification of the first archaeal oligopeptide-binding protein from the hyperthermophile Aeropyrum pernix.
[4] Proteome analysis of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1.
[5] The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity.
[6] Properties of the alpha subunit of a Chaperonin from the hyperthermophilic Crenarchaeon Aeropyrum pernix K1.
Edited by Daniel Pak, student of Rachel Larsen and Kit Pogliano