Trichodesmium erythraeum: Difference between revisions
Line 45: | Line 45: | ||
==Application to Biotechnology== | ==Application to Biotechnology== | ||
While <I>Trichodesmium erythraeum</I> contributes to surrounding ecosystems by its fixation of carbon and nitrogen, it has not yet been utilized widely in biotechnology, a variety of uses have been found for other cyanobacteria. For instance | |||
==Current Research== | ==Current Research== |
Revision as of 00:52, 5 June 2007
A Microbial Biorealm page on the genus Trichodesmium erythraeum
Classification
Higher order taxa
Bacteria; Cyanobacteria; Oscillatoriales; Trichodesmium; Trichodesmium erythraeum
Species
NCBI: Taxonomy |
Trichodesmium erythraeum
Description and significance
Tricodesmium is a genus of cyanobacteria that is found in tropical and subtropical ocean waters with low nutrient levels. There are five known species of Tricodesmium
This genus is of great interest because it has been found to contribute over 40% of all nitrogen fixation that occurs in the ocean. In addition, there has been evidence that Trichodesmium blossoms can have a toxic effect on invertebrates and humans. Trichodesmium erythraeum is a species of the Trichodesmium genus and occurs as filaments of 20-200 cells. These filaments often congregate to form larger colonies that can be seen by the naked eye.
Genome structure
Has a circular genome that is 7750108 nucleotides long. This includes 4451 genes and 48 RNA genes.
Cell structure and metabolism
Trichodesumium erythraeum contain gas vesicles which can occupy up to 60-70% of the total cell volume. Within the cell, these gas vacuoles are aligned so that their longitudinal axis is oriented perpendicular to the direction of the filament(Van Baalen 1969). These gas vesicles allow T. erythraeum an amount of buoyancy according to changes in the concentration of carbohydrates within the cell (Sellner 1997). Photosynthetic lamallae can be seen throughout the cell, but tend to be more populous toward the center of the cell (Van Baalen 1969).
Two major metabolic processes take place inT. erythraeum: carbon fixation and nitrogen fixation. Like other cyanobacteria, T. erythraeum are able to derive energy through the process of photosynthesis. Photosynthesis serves to drive carbon fixation in the cells and also leads to the production of oxygen and energy in the form of ATP.
Since nitrogenase, enzyme needed for nitrogen fixation, is inactivated in the presence of oxygen, nitrogen fixing bacteria have developed ways to protect the nitrogenase within them from oxygen. Trichodesmium are thought to do this by keeping nitrogenase and oxygen physically separated in a manner not unlike the compartmentalization of oxygen demonstrated by heterocystous cyanobacteria (Bergman 1991). During times of high nitrogen fixation researcher have observed an increase in photosynthetically inactive areas in Trichodesmium colonies. This suggests that in addition to spatial separation, nitrogenase is segregated from oxygen in time by downregulating the amount of photosynthetically derived oxygen when nitrogenase activites are at their highest (Bergman 2001).
Ecology
Trichodesumium erythraeum is found in tropical and subtropical ocean waters. It combines with Trichodesmium thiebautii to form blooms which have been found to be toxic to various invertebrates as well as humans. Despite it’s toxic effects, the Trichodesumium genus is important and necessary to the environment because it is a major contributor to nitrogen fixation.
Pathology
Cyanobacteria are known to produce toxin (cyanotoxins) that can lead to to the death of various organisms.
The large Trichodesmium blooms formed of T. thiebautii and T. erythraeum have been connected to toxicity in marine invertebrates as well as humans. While isolates of T. erythraeum cells were not found to be toxic to mice, except at high concentrations (500g/kg mouse), they have been linked to the mortality of various marine organisms(Hawser 1992, Guo 1992). In humans, Trichodesmium blooms have been associated with a respiratory syndrome known as Tamandare or Trichodesmium fever (Sudek 2006). Currently no known toxin has been succesfully isolated from Trichodesmium erythraeum. Chemical assays of lipophilic T. erythraeum from Australia have not been able to detect common neurotoxins, but it is possible that different strains of bacteria as well as different environmental factors may lead to a difference in the development of toxins in T. erythraeum (Negri 2003).
In addition, T. erythraeum can cause harm to other organisms through a variety of mechamisms besides toxin production. When blossoms of this cyanobacteria decay, they cause the surrounding environmnent to become anoxic. The low oxygen conditions resulting from bloom decay has been associated with the death of pearl oysters at a farm in India as well as the death of shrimp and fish in a farm in Thailand (Chellham 1978, Suvavpun 1989). It is also a possibility that T. erythraeum can cause harm to nearby organisms by promoting the formation of blooms of other species that may produce toxins or have a harmful effect(Sudek 2006).
Application to Biotechnology
While Trichodesmium erythraeum contributes to surrounding ecosystems by its fixation of carbon and nitrogen, it has not yet been utilized widely in biotechnology, a variety of uses have been found for other cyanobacteria. For instance
Current Research
Phosphonate utilization by the globally important marine diazotroph Trichodesmium (Dyhrman 2006)
Trichodesmium erythraeum are able to utilize about 75% of the dissolved organic phosphate (DOP) in their ocean environment. This study proposes that Trichodesmium erythraeum is also able to use phosphonate (the remaining 25% of the DOP) as a source of phosphorous in metabolic processes. Analysis of the T. erythraeum genome has shown that the organism possesses orthologs of phn genes that are responsible for phosphonate transport and a C-P lyase complex in the cell membrane in other species of bacteria. These cellular components are important in C-P lyase pathways that allow the breaking of carbon-phosphate ester bonds to free phosphate for use in the cell. The presence of such orthologs in all species of Trichodesmium that have been tested suggests that these features arised early in the evolution of the genus. The similarity of phn orthologs in Trichodesmium to genes in Thiobacillus as well as their increased GC content in comparison to the rest of the Trichodesmium genome are evidence that they were incorporated by horizontal gene transfer. mRNA analysis of T. erythraeum samples from the Sargasso Sea show that phn genes are expressed only when cells experience low levels of phosphorous cycling. This ability of T. erythraeum to regulate gene expression suggests that this bacteria is indeed able to utilize phosphonate as a source of phosphorous through a C-P lyase pathway when other phosphorous sources are limited. This ability could convey an advantage to T. erythraeum and help explain the high abundance of this cyanobacteria in ocean environments with limited nutrients.
Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence
Overexpression and characterization of an iron storage and DNA-binding Dps protein from Trichodesmium erythraeum (Castruita 2006) Although iron is important to the process of nitrogen fixation in cyanobacteria, iron storage proteins have not yet been isolated from marine microorganisms. This study marks the first identification of an iron storage protein, a Dps (DNA binding protein) in Trichodesmium erythraeum. Analysis of the amino acid sequence of T. erythraeumIM101 revealed two genes that appear to have a significant amount of homology with genes known to code for bacterioferritin (iron storage protein) components. These genes demonstrated conservation of sequences important for iron binding cores. The Dps protein isolated from T. erythraeum was able to bind Iron and incorporate phosphate, both characteristics of other members of the ferritin family. In addition, the Dps isolated was able to bind DNA with a much higher affinity than Dps proteins from E. coli. When DNA incubated with Dps were exposed to DNase I they were not degraded, which provides evidence that in addition to serving as an iron storage protein, Dps in T. erythraeum help DNA from damage. This proctection against DNA damage may especially important for T. erythraeum because their exposure to UV light and execution of metabolic processes provides oxidative stress which could prove harmful to the organism.
References
http://expasy.org/sprot/hamap/TRIEI.html
Bergman, B., and E. J. Carpenter. 1991. Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. J. Phycol. 27:158-165.
Berman-Frank, I., P. Lundgren, Y.-B. Chen, H. Kupper, Z. Kolber, B. Bergman, and P. Falkowski. 2001. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534-1537.
Castruita M, Saito M, Schottel PC, Elmegreen LA, Myneni S, Stiefel EI, Morel FM. Overexpression and characterization of an iron storage and DNA-binding Dps protein from Trichodesmium erythraeum. Appl Environ Microbiol. 2006 Apr;72(4):2918-24. http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1449065&blobtype=pdf
Chellham, A., Alagarswami, K., 1978. Blooms of Trichodesmium thiebautii and their effects on experimental pearl culture in the Pambau area and its effect on the fauna. Curr. Sci. 10, 263.
Dyhrman, S., et al. 2006. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439(7072):68-71. http://www.nature.com/nature/journal/v439/n7072/abs/nature04203.html;jsessionid=2404FD5D585CEF00B47C677BCBC28B85
Guo, C., and P. A. Tester. 1994. Toxic effect of the bloom-forming Trichodesmium sp. (cyanophyta) to the copepod Acartia tonsa. Nat. Toxins 2:222-227
Hawser, S. P., J. M. O'Neil, M. R. Roman, and G. A. Codd. 1992. Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton. J. Appl. Phycol. 4:79-86.
Negri, A., O. Bunter, B. Jones, L. Llewllyn. 2003. Effects of the bloom-forming alga Trichodesmium erythraeum on the pearl oyster Pinctada maxima. Aquaculture:91-102.
Sudek S, Haygood MG, Youssef DT, Schmidt EW. 2006. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol. 2006 Jun;72(6):4382-7.
Suvapepun, S., 1989. Occurrences of red tide in the Gulf of Thailand. In: Okaichi, T., Anderson, D.M., Nemoto, T. (Eds.), International Symposium on Red Tides, Takamatsu (Japan), 10– 14 Nov 1987, Red Tides: Biology, Environmental Science and Toxicology. Elsevier, New York, pp. 41– 44.
Van Baalen C, Brown RM Jr. 1969. The ultrastructure of the marine blue green alga, Trichodesmium erythraeum, with special reference to the cell wall, gas vacuoles, and cylindrical bodies. Arch Mikrobiol. 69(1):79-91.
Edited by Tara Tsukamoto student of Rachel Larsen and Kit Pogliano