Agrobacterium: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
{| width="800" cellspacing="2" cellpadding="2" align="center" | {| width="800" cellspacing="2" cellpadding="2" align="center" | ||
| width="802" height="874" bgcolor="#ffffff" valign="top" | | | width="802" height="874" bgcolor="#ffffff" valign="top" | | ||
<h2> | <h2>Classification</h2><br style="clear:both" /><h3>'''Higher order taxa:'''</h3> Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae; Rhizobium/Agrobacterium group <br /><h3>'''Species: '''</h3>''Agrobacterium agile, Agrobacterium albertimagni, Agrobacterium aurantiacum, Agrobacterium larrymoorei, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium tumefaciens, Agrobacterium vitis, Agrobacterium ''sp. | ||
<h2> | <h2>Description and Significance<br /></h2>At the turn of the century ''Agrobacterium tumefaciens'' was identified as the causal agent in crown gall disease in dicotyledonous plants. Since then, thorough research has been done on this bacterium's mechanism of tumor induction; in addition, ''Argorbacterium'' is used in numerous research projects as a means with which to introduce new genes into the genomes of a number of plants. | ||
<h2> | <h2>Genome Structure</h2><br />''Agrobacterium'' ''tumefaciens str. C58 '' has an unusual chromosomal organization - it has a 2 Mb linear and a 2.8 Mb circular chromosome as well as a 206.479 kbp Ti (tumor-inducing) plasmid. The genes that cause gall formation in plants are located for the most part on the the Ti plasmid. Interestingly, if ''Agrobacterium'' is grown near its maximum temperature of about 30<sup>o</sup>C, then the plasmid is lost as well as the pathogenicity of the bacterium. The bacterium itself is still functional and can thrive in culture (Deacon).</font></font> The genome of ''Agrobacterium vitis'' is currnetly being sequenced. It causes gall disease in grapes. | ||
<h2> | <h2>Cell Structure and Metabolism</h2> | ||
{| width="802" | {| width="802" | ||
Line 16: | Line 16: | ||
''Agrobacterium'' ''tumefaciens'' is a Gram-negative, non-sporeforming, rod-shaped bacterium. ''Agrobacterium'' strains use different carbohydrates and are classified into three main biovars. The differences among biovars are mainly determined by the genes on the circular chromosome. ''A. tumefaciens ''is known for calling the formation of galls on plants that it infects. When a wound opens on the plant tissue, the motile cells of ''A. tumefaciens'' move into the tissue by chemotaxis as a response to the release of sugars and other components normally in the roots. While ''A''. ''tumefaciens'' cells without Ti plasmids recognize and move towards plant wounds, the strains containing the Ti plasmids respond even more strongly because they recognize phenolic compounds such as acetosyringone that come out of the wound (Deacon). | ''Agrobacterium'' ''tumefaciens'' is a Gram-negative, non-sporeforming, rod-shaped bacterium. ''Agrobacterium'' strains use different carbohydrates and are classified into three main biovars. The differences among biovars are mainly determined by the genes on the circular chromosome. ''A. tumefaciens ''is known for calling the formation of galls on plants that it infects. When a wound opens on the plant tissue, the motile cells of ''A. tumefaciens'' move into the tissue by chemotaxis as a response to the release of sugars and other components normally in the roots. While ''A''. ''tumefaciens'' cells without Ti plasmids recognize and move towards plant wounds, the strains containing the Ti plasmids respond even more strongly because they recognize phenolic compounds such as acetosyringone that come out of the wound (Deacon). | ||
<h2> | <h2>Ecology</h2> | ||
''Agrobacterium'' ''tumefaciens'' can generally be found on and around root surfaces known as the rhizosphere. There it seems to use nutrients that leak from the root tissue. It will infect the tissue at wound sites formed from transplanting seedlings, burrowing animals or bugs, etc (Deacon). ''Agrobacterium'' ''radiobacter'' grows on various explosives such as nitroglycerine - they use this as their sole source of nitrogen. It removes two nitro groups from nitroglycerine by an NADH-dependent oxidoreductase, but can not use the carbon in nitroglycerine for growth because it cannot remove the third nitro group to release glycerol (White). | ''Agrobacterium'' ''tumefaciens'' can generally be found on and around root surfaces known as the rhizosphere. There it seems to use nutrients that leak from the root tissue. It will infect the tissue at wound sites formed from transplanting seedlings, burrowing animals or bugs, etc (Deacon). ''Agrobacterium'' ''radiobacter'' grows on various explosives such as nitroglycerine - they use this as their sole source of nitrogen. It removes two nitro groups from nitroglycerine by an NADH-dependent oxidoreductase, but can not use the carbon in nitroglycerine for growth because it cannot remove the third nitro group to release glycerol (White). | ||
<h2>Crown Gall Disease</h2> | |||
''Agrobacterium'' ''tumefaciens'' is most widely known for causing crown gall disease that affects many dicotyledonous (broad-leaved) plants; another strain called biovar 3 causes crown gall disease in grapvines. The disease causes the formation of tumor-like swellings called galls that can generally be found on the crown of the plant just above the soil. Crown gall disease does not usually seriously harm older plants; however, it may reduce the value of a plant in a nursery. | ''Agrobacterium'' ''tumefaciens'' is most widely known for causing crown gall disease that affects many dicotyledonous (broad-leaved) plants; another strain called biovar 3 causes crown gall disease in grapvines. The disease causes the formation of tumor-like swellings called galls that can generally be found on the crown of the plant just above the soil. Crown gall disease does not usually seriously harm older plants; however, it may reduce the value of a plant in a nursery. | ||
Line 31: | Line 31: | ||
|} | |} | ||
<h2>Banana Vaccines </h2> | |||
{| width="792" | {| width="792" | ||
Line 44: | Line 44: | ||
This has already been shown to work using potatoes and a modified'' E. coli'' protein that is known to cause severe diarrhea. When mice ate the raw engineered potatoes, they developed the antibodies to the ''E. coli ''toxin. Clinical tests on humans eating genetically engineered potatoes also showed that they started producing antibodies against Norwalk virus, which causes acute bouts of diarrhea (Redig 2003). For now, all clinical trials involve genetically modified potatoes or tomatoes, both of which can easily be freeze-dried, transported, and reconstituted. These can be more easily dosage regulated and quality controlled, unlike a banana tree growing in the middle of a village, for example. But the ideal of fresh banana vaccines is still being developed and perfected. | This has already been shown to work using potatoes and a modified'' E. coli'' protein that is known to cause severe diarrhea. When mice ate the raw engineered potatoes, they developed the antibodies to the ''E. coli ''toxin. Clinical tests on humans eating genetically engineered potatoes also showed that they started producing antibodies against Norwalk virus, which causes acute bouts of diarrhea (Redig 2003). For now, all clinical trials involve genetically modified potatoes or tomatoes, both of which can easily be freeze-dried, transported, and reconstituted. These can be more easily dosage regulated and quality controlled, unlike a banana tree growing in the middle of a village, for example. But the ideal of fresh banana vaccines is still being developed and perfected. | ||
<h2> | <h2>References Updated July 28, 2005</h2> | ||
[http://www.wegmans.com/kitchen/ingredients/produce/fruit/bananas.asp Brown, Kathryn. 1996. "Vaccine Cuisine." Environmental Health Perspectives, vol. 104, no. 3. ] | [http://www.wegmans.com/kitchen/ingredients/produce/fruit/bananas.asp Brown, Kathryn. 1996. "Vaccine Cuisine." Environmental Health Perspectives, vol. 104, no. 3. ] |
Revision as of 13:14, 30 May 2006
ClassificationHigher order taxa:Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae; Rhizobium/Agrobacterium groupSpecies:Agrobacterium agile, Agrobacterium albertimagni, Agrobacterium aurantiacum, Agrobacterium larrymoorei, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium tumefaciens, Agrobacterium vitis, Agrobacterium sp.Description and SignificanceAt the turn of the century Agrobacterium tumefaciens was identified as the causal agent in crown gall disease in dicotyledonous plants. Since then, thorough research has been done on this bacterium's mechanism of tumor induction; in addition, Argorbacterium is used in numerous research projects as a means with which to introduce new genes into the genomes of a number of plants.
Genome StructureAgrobacterium tumefaciens str. C58 has an unusual chromosomal organization - it has a 2 Mb linear and a 2.8 Mb circular chromosome as well as a 206.479 kbp Ti (tumor-inducing) plasmid. The genes that cause gall formation in plants are located for the most part on the the Ti plasmid. Interestingly, if Agrobacterium is grown near its maximum temperature of about 30oC, then the plasmid is lost as well as the pathogenicity of the bacterium. The bacterium itself is still functional and can thrive in culture (Deacon). The genome of Agrobacterium vitis is currnetly being sequenced. It causes gall disease in grapes. Cell Structure and Metabolism
Banana Vaccines
This has already been shown to work using potatoes and a modified E. coli protein that is known to cause severe diarrhea. When mice ate the raw engineered potatoes, they developed the antibodies to the E. coli toxin. Clinical tests on humans eating genetically engineered potatoes also showed that they started producing antibodies against Norwalk virus, which causes acute bouts of diarrhea (Redig 2003). For now, all clinical trials involve genetically modified potatoes or tomatoes, both of which can easily be freeze-dried, transported, and reconstituted. These can be more easily dosage regulated and quality controlled, unlike a banana tree growing in the middle of a village, for example. But the ideal of fresh banana vaccines is still being developed and perfected. References Updated July 28, 2005Brown, Kathryn. 1996. "Vaccine Cuisine." Environmental Health Perspectives, vol. 104, no. 3. Abraham Loyter, Joseph Rosenbluh, Nehama Zakai, Jianxiong Li, Stanislav V. Kozlovsky, Tzvi Tzfira and Vitaly Citovsky. The Plant VirE2 Interacting Protein 1. A Molecular Link between the Agrobacterium T-Complex and the Host Cell Chromatin?Plant Physiology, July 2005, Vol. 138, pp. 1318-1321. White, Graham. The Molecular Cell Biology Research Group: Research |