Acidithiobacillus albertensis: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 19: Line 19:
Describe the size and content of the genome.  How many chromosomes?  Circular or linear?  Other interesting features?  What is known about its sequence?
Describe the size and content of the genome.  How many chromosomes?  Circular or linear?  Other interesting features?  What is known about its sequence?


[[File:Albertensis_genome.png|thumb||right|The ''A. albertensis'' genome consists of a single, circular chromosome]]


==Cell Structure, Metabolism and Life Cycle==
==Cell Structure, Metabolism and Life Cycle==

Revision as of 23:29, 24 April 2024

This student page has not been curated.

Classification

Domain; Bacteria Phylum; Proteobacteria Class; Acidithiobacillia Order; Acidithiobacillales family; Acidithiobacillaceae Genus: Acidithiobacillus

Species

NCBI: [1]

Acidithiobacillus albertensis

Description and Significance

Describe the appearance, habitat, etc. of the organism, and why you think it is important.

Genome Structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?

The A. albertensis genome consists of a single, circular chromosome

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.


Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

References

“Chalcopyrite.” Encyclopædia Britannica, Encyclopædia Britannica, inc., www.britannica.com/science/chalcopyrite.

Castro, M., et al. “Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis (DSM 14366)”. Standards in genomic sciences. 2017. Volume 12 p. 77-84.

Chen, J., Liu, Y., Diep, P., Mahadevan, R. “Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: Progress and perspectives”. Journal of Hazardous Materials. 2022. Volume 438 p. 129-247.

Moya-Beltrán, A., Beard, S., Rojas-Villalobos, C. et al. “Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions”. ISME J. 2021. Volume 15 p. 3221–3238.

Moya-Beltrán, A., Gajdosik, M., Rojas-Villalobos, C. et al. “Influence of mobile genetic elements and insertion sequences in long- and short-term adaptive processes of Acidithiobacillus ferrooxidans strains”. Sci Rep. 2023.Volume 13 p. 10876-10890.

Rzhepishevska, O. “Physiology and Genetics of Acidithiobacillus Species: Applications for Biomining”. Umeå University. 2023.

Schofield, E. “Acid Rock Drainage: More than Just a Mining Project Concern?” Barr Engineering Co., 2023. www.barr.com/Insights/Insights-Article/ArtMID/1344/ArticleID/380/Acid-rock-drainage-More-than-just-a-mining-project-concern.

“Section 3 - Acidithiobacillus: Safety Assessment of Transgenic Organisms”. OECD. 2006. Volume 2.

“Tetrathionate.” Wikipedia, Wikimedia Foundation, 27 Aug. 2023, en.wikipedia.org/wiki/Tetrathionate.

Vardanyan, N.S., and A.K. Vardanyan. “New sulphur oxidizing bacteria isolated from bioleaching pulp of zinc and copper concentrates.” Universal Journal of Microbiology Research. 2014. Volume 2 p. 27–31.

Xia, J., et al. “A new strain acidithiobacillus albertensis by-05 for bioleaching of metal sulfides ores.” Transactions of Nonferrous Metals Society of China. 2007. Volume 17 p. 168–175.

Author

Page authored by Ben Sauer and Rose Schnabel, students of Prof. Jay Lennon at IndianaUniversity.