Oleispira antarctica: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 28: Line 28:


==Description and Significance==
==Description and Significance==
Oleispira antarctica is a gram-negative bacterium.


Describe the appearance, habitat, etc. of the organism, and why you think it is important.
Describe the appearance, habitat, etc. of the organism, and why you think it is important.


==Genome Structure==
==Genome Structure==

Revision as of 15:33, 26 November 2024

{Uncurated}}

Oleispira antarctica. International Journal of Systematic and Evolutionary Microbiology vol 53(3).


Classification

cellular organisms; Bacteria; Pseudomonadati; Pseudomonadota; Gammaproteobacteria; Oceanospirillales; Oceanospirillaceae


Species

NCBI: [1]


Genus species

Description and Significance

Oleispira antarctica is a gram-negative bacterium.

Describe the appearance, habitat, etc. of the organism, and why you think it is important.

Genome Structure

Oleispira is classified as a psychrophile. The size of Oleispira antarctica’s genome is around 4.4 Mb According to the ncbi.nih.nih database and contains around 3,557 protein-coding genes. Oleispira antarctica has a singular circular chromosome. This bacterium is a member of the Gammaproteobacterial class and has adapted to thrive in low-temperature environments by using hydrocarbons as a primary energy source. The genome has genes that support cold adaptation, membrane fluidity and specialized metabolic pathways for breaking down alkanes and other hydrocarbons in the waters/oceans. Oleispira antarctica’s unique genetic features and energy requirements allow it to be utilized in oil spill clean-up. The bacterium genome highlights its importance in polar marine ecology and its potential application in environmental biotechnology.

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.

O. antarctica is a species of aerobic bacteria that are chemoorganoheterotrophs that grow in aliphatic alkanes which are hydrocarbons made up of single covalent bonds (Gregson et al., 2020). They are able to degrade hydrocarbons such as Deisel for energy (Gentile et al., 2016).

Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment.

If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.


References

Gentile G, Bonsignore M, Santisi S, Catalfamo M, Giuliano L, Genovese L, Yakimov MM, Denaro R, Genovese M, Cappello S. 2016. Biodegradation potentiality of psychrophilic bacterial strain oleispira antarctica RB-8 T. Marine Pollution Bulletin 105:125–130.

Gregson BH, Metodieva G, Metodiev MV, Golyshin PN, McKew BA. 2020. Protein expression in the obligate hydrocarbon‐degrading psychrophile oleispira antarctica RB‐8 during alkane degradation and cold tolerance. Environmental Microbiology 22:1870–1883.

Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham W-R, Lünsdorf H, Timmis KN, Golyshin PN. 2003. Oleispira Antarctica gen. Nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic Coastal Sea Water. International Journal of Systematic and Evolutionary Microbiology 53:779–785.

Author

Page authored by Trinity O'Neal, Kaliany Vazquez, Savion Powell, & Dylan Price, students of Prof. Bradley Tolar at UNC Wilmington.