Thermos Thermophilus: Difference between revisions
| Line 42: | Line 42: | ||
==Ecology== | ==Ecology== | ||
{| border="1" | |||
!Most Thermus Thermophilus can be found in various geothermal environment through out the earth such as hot spring, undersea volcanic thermal vents. Thermophiles can live in acidic condition as low as pH 3.4 to very basic alkaline environment such as pH 9. The ability that allows them to survive these environments is all encoded in their gene and protein structure.!! Thermus Environment [[Image:Grand_prismatic_spring.jpg|frame|none|]] | |||
|- | |||
|} | |||
==Pathology== | ==Pathology== | ||
Revision as of 21:00, 29 August 2007
A Microbial Biorealm page on the genus Thermos Thermophilus
Classification
Higher order taxa
Higher order taxa: Bacteria (Domain): Deinococcus-Thermus (Phylum): Deinococci (Class): Thermales (Order): Thermacaea (Family): Thermus (Genus) [1] link to find]
Species
Thermophilus (Species): Strain (HB27, HB8)
|
NCBI: Taxonomy |
Genus species
Description and significance
| Thermus Thermophilus is a Gram-negative bacterium that was isolated in 1971, Japan. They spawn in thermal spring ranging from 50-82C. The biological machines from these organisms have a higher stability than other organisms due to the environment that they have to live in. In general, thermophiles are anaerobes that can live in hot environment with low oxygen solubility due to the temperature with the exception of thermus, they are aerobic chemorganotroph. Thermus Thermophilus contains two strains, HB8 and HB27; both were found in Japan’s thermal environment with optimum environment 68C and the pH 7.0. The HB8 strain can live in either anaerobe and aerobe; where as the HB27 can only strive in aerobe environment. HB8 survive anaerobeically in the presence of nitrate through nitrate reductase production. However the HB27 was unable to growth in the same environment as the HB8 due to the inability to produce nitrate reductase. | Thermus Thermophilus |
|---|
Genome structure
The Thermus Thermophilus bacterium contain Circular DNA and a megaplasmid. The DNA has 1,894,877 base pair where 1476627 base pair (69.40%) are G+C content. The high percentage of G+C content allow the bacterium to strive in extreme thermo environment where it's own genetic information would not be denatured by the surrounding environment. Also, the megaplasmid contain 232,605 nucleotides with 69% G+C content. In addition, it contained a total of 2210 protein encoding genes and 53 RNA genes. (2)
|
NCBI: Genome structure |
Cell structure and metabolism
Ecology
Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
References
Edited by student of Rachel Larsen

