Dehalococcoides ethenogenes: Difference between revisions
Line 27: | Line 27: | ||
''D. ethenogenes'' mediates reductive dechlorination reaction via hydrogenolysis or dichloroelimination. In hydrogenolysis, chlorine is replaced by hydrogen, with a net input of one proton and two electrons. In dechloroelimination, chlorine substituents are replaced via the formation of a double bond between the two associated carbon atoms. The dechloroelimination reaction has a net input of two electrons. The biological process mostly undergoes hydrogenolysis. | ''D. ethenogenes'' mediates reductive dechlorination reaction via hydrogenolysis or dichloroelimination. In hydrogenolysis, chlorine is replaced by hydrogen, with a net input of one proton and two electrons. In dechloroelimination, chlorine substituents are replaced via the formation of a double bond between the two associated carbon atoms. The dechloroelimination reaction has a net input of two electrons. The biological process mostly undergoes hydrogenolysis. | ||
Importantly, ''D. ethenogenes'' conserves energy when hydrogen serves as electron donor, halogenated compounds are electron acceptors, and the enzyme reductive dehalogenase catalyzes the reaction. | Importantly, ''D. ethenogenes'' conserves energy when hydrogen serves as electron donor, halogenated compounds are electron acceptors, and the enzyme reductive dehalogenase catalyzes the reaction. Each intermediate reaction, from PCE to TCE to cis-DCE to VC is energy-yielding for ''D. ethenogenes''; however, the VC to ethene intermediate is cometabolic and does not provide the beneift of energy to the microbe. While the process from VC to ethene is not beneficial to the microbe, it is critical to remediating the contaminated environment. | ||
The redox potentials for each intermediate reaction range from 260 to 570 mV. ''D. ethenogenes'' can dehalorespirate using chloroethenes, chlorophenols, and polychlorinated biphenyls/dioxins as terminal electron acceptors. | |||
==Ecology== | ==Ecology== |
Revision as of 20:00, 24 April 2008
A Microbial Biorealm page on the genus Dehalococcoides ethenogenes
Classification
Higher order taxa
Domain: Bacteria; Phylum: Chloroflexi; Class: Dehalococcoidetes; Order: Dehalococcoides
Species
Dehalococcoides ethenogenes (strain 195)
Description and significance
Dehalococcoides ethenogenes is Gram-positive, which generally means it has a very thick cell wall and a single membrane layer. From a three-dimensional prospective, it appears to have an irregular, spherical shape. The species has a circular shape, although not perfectly circular (irregular coccus). The species moves spontaneously and independently. It is mesoplilic, likeing moderate environments around 25 and 40°C, with an optimal temperature of 35°C. D. ethenogenes is anaerobic and cannot use oxygen, nitrate, or sulfate as electron acceptors.
This specific strand of genome was sequenced, and it was discovered to help decontaminate toxic chemicals from many industries. Specifically, this species reduces chlorinated hydrocarbons in contaminated environments to harmless daughter compounds (ethene) . Chlorinated hydrocarbons are significantly toxic to humans and contaminate groundwater where the chemical is not handled properly.
Genome structure
Dehalococcoides ethenogenes has 1,469,720 or 1.5 Mb nucleotide base pairs in its genome. Only one gene encoding reductive dehalogenase has been isolated and characterized. Strain 195 is the only known bacterium, to date, which completely dechlorinates tetrachloroethene (PCE) and trichloroethene, to ethene. Strains show >98% nucleotide and >85% amino acid similarity; however, different strains utilize different ranges of haloorganic compounds as electron acceptors.
Dehalococcoides ethenogenes has plasmids called pUA969, pUA970, pUA971. These plasmids work to bind D. ethenogenes LexA gene to Bacillus subtilis. This is significant because it makes the first Gram-negative bacterium sharing LexA binding site like that of B. subtilis.
Cell structure and metabolism
D. ethenogenes mediates reductive dechlorination reaction via hydrogenolysis or dichloroelimination. In hydrogenolysis, chlorine is replaced by hydrogen, with a net input of one proton and two electrons. In dechloroelimination, chlorine substituents are replaced via the formation of a double bond between the two associated carbon atoms. The dechloroelimination reaction has a net input of two electrons. The biological process mostly undergoes hydrogenolysis.
Importantly, D. ethenogenes conserves energy when hydrogen serves as electron donor, halogenated compounds are electron acceptors, and the enzyme reductive dehalogenase catalyzes the reaction. Each intermediate reaction, from PCE to TCE to cis-DCE to VC is energy-yielding for D. ethenogenes; however, the VC to ethene intermediate is cometabolic and does not provide the beneift of energy to the microbe. While the process from VC to ethene is not beneficial to the microbe, it is critical to remediating the contaminated environment.
The redox potentials for each intermediate reaction range from 260 to 570 mV. D. ethenogenes can dehalorespirate using chloroethenes, chlorophenols, and polychlorinated biphenyls/dioxins as terminal electron acceptors.
Ecology
Dehalococcoides ethenogenes most common use is for cleaning toxic messes by PCE. PCE is a suspected human carcinogen. Basically without this bacterium, PCE cancer spread to humans and animals. The symptoms of short-term exposure to PCE cause dizziness, headaches, and problems with balance, while long-term exposure of PCE has been linked to cancers of the esophagus, bladder, and blood. Therefore, D. ethenogenes is used to manipulate PCE and to minimize its symptoms. Not only does D. ethenogenes stop the spread of cancer to humans, but protect the groundwater that are PCE exposed.
Pathology
This organism can be known as pathogen-free. It does not produce disease or illness to its host.
Application to Biotechnology
Dehalococcoides ethenogenes is only known bacteria that can breakdown PCE, a dangerous and toxic carcinogen in chemical working environments. This organism converts PCE and hydrogen to chlorine and ethene, which render the toxin completely harmless. The bacteria "come in stainless steel vessels that contain roughly 2000 billion Dehalococcoides bacteria ready for injection into groundwater" (495). This system of removing contamination from groundwater was named "pump-and-treat". Basically, they would inject the bacteria into groundwater to convert PCE into ethylene. Research indicates that the level of ethylene rises; therefore, the injection was an success.
Current Research
1) The solvents tetrachloroethene (PCE) and trichloroethene (TCE) are among the most pollutants at contaminated groundwater sites. Under aerobic conditions, PCE is considered difficult to reduce, while TCE can be broken down to non-toxic products. This poses a problem because PCE is a harmful chemical to the environment, but cannot be controlled when oxygen is present. Therefore, there are flaws that D. ethenogenes cannot fix completely. However under anaerobic conditions, PCE and TCE have been able to reduce to ethylene, which deems them less harmless.
2) Bioremediation Consulting Inc. (BCI), of Watertown, Massachusetts identified at least 4 natural microbes containing Dehalococcoides ethenogenes that are known as TCA-tolerant D. ethenogenes. Also, found growing there was Dehalobacter. TCA is converted to chloroethane by Dehalobacter. There is also dechlorination TCE and DCE to ethene and TCA dechlorinated to chloroethane. This research indicated the difference between using natural microbes or bacteria like Dehalobacter to treat the contaminated areas.
3) Today, in the United States, the bacteria have been used to clean up chlorinated solvents in ten states at 17 sites including Kelly Air Force Base in Texas and Caldwell Trucking Superfund Site in New Jersey. For SiREM, business has been good; 13 of the sites were done in the past 18 months.
References
Duhamel et al. 2002, Water Research, Vol 36, p 4193
Maymo-Gatell, X., 1997, Science, Vol 276
B. Sun et al., 2002, Science, Vol 298 p. 1023
Edited by Tim Hou of Rachel Larsen and Kit Pogliano