Methanobacterium palustre: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 38: Line 38:


==Author==
==Author==
Page authored by _____, student of Prof. Jay Lennon at IndianaUniversity.
Page authored by Brian Underwood and Joe Wernet, students of Prof. Ned Walker and Kaz Kashefi at Michigan State University.


<!-- Do not remove this line-->[[Category:Pages edited by students of Jay Lennon at Indiana University]]
<!-- Do not remove this line-->[[Category:Pages edited by students of Jay Lennon at Indiana University]]

Revision as of 22:28, 17 April 2014

This student page has not been curated.

Classification

Domain: Archaea--- Kingdom: Euryarchaeota--- Phylum: Euryarchaeota--- Class: Methanobacteria--- Order: Methanobacteriales--- Family: Methanobacteriaceae--- Genus: Methanobacterium--- Species: Palustre

Species

Methanobacterium palustre

NCBI: Taxonomy

Genus species

Description and Discovery

Methanobacterium palustre was discovered in 1989 in a location in Germany known as the Sippenauer Moor. The environmental habitat dominating in this area is known as a peat bog. Others often refer to it as a marshland. Due to its ability to anaerobically produce methane through a process known as methanogenesis, researchs thus named it's genus "Methanobacterium". Ironically the term used for the species identification, "palustre", is French for the word: marshland. Therefore you could describe the microorganism as an Archaea that thrives in a marshland habitat via producing methane metabolically.

Cell Morphology

Methanobacterium palustre has a thin, rod-like shape and has been characterized as Strain F. This bacillus microorganism has an average cell length of anywhere between 2.5µm – 5µm. The cell body occasionally has filamentous appendages protruding outwards. These are used mostly as a means for cellular reproduction. The appendages are over 10x in length from the actual cell body measuring to about 65µm. A Gram stain revealed that it is in fact Gram Positive meaning that it lacks a peptidoglycan layer outside of its cytoplasmic membrane. After viewing this microorganism using the wet mount technique, motility was not observed. Therefore, M. palustre must rely on water currents to move about its anoxic environment.

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.


Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Author

Page authored by Brian Underwood and Joe Wernet, students of Prof. Ned Walker and Kaz Kashefi at Michigan State University.