Paracoccus denitrificans

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Paracoccus denitrificans

Classification

Higher order taxa

Bacteria; Proteobacteria; Alpha Proteobacteria; Rhodobacterales; Rhodobacteraceae;

Species

NCBI: Taxonomy

Paracoccus denitrificans

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Genome structure

The genome of Paracoccus denitrificans consists of two circular chromosomes and one plasmid. The first chromosome has 2,852,282 base pairs. The second chromosome has 1,730,097 base pairs and the plasmid has 653,815 base pairs. The plasmid encodes 611 known proteins such as Formyltetrahydrofolate deformylase and TonB-dependent siderophore receptor precursor. These proteins are not essential for the survival of the bacterium; however, the proteins transcribed and translated from the plasmid allow the bacterium to perform many of its metabolic functions.

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen and Kit Pogliano