Acidithiobacillus thiooxidans

From MicrobeWiki, the student-edited microbiology resource

Classification

Higher order taxa

Species

Description and significance

16S Ribosomal RNA Gene Information

Genome Structure

Cell structure and metabolism

Ecology and Pathogenesis

Acidithiobacillus thiooxidans are most commonly located in soil, sewer pipes and cave biofilms also known as “snottites”. Snottites are acidic biofilms that are formed by sulfur oxidizing microbes in caves rich in sulfide. A. thiooxidans in the biofilm produce sulfuric acid as a byproduct, which degrades the cave surfaces. This same process can occur in industrial pipes and cause corrosion. Distribution and morphology of the snottites are dependent on the abundance of nutrients essential for the microbial growth (Jones et al, 2012).

A. thiooxidans are able to inhabit environments where many other microbes cannot due to their high tolerance for Copper and Zinc. The organism is utilized in a mining technique called “bioleaching”, which involves extracting metals from their ores through the action of microbes. The technique uses the catalytic effect produced by the organism’s metabolism to accelerate the degradation of the sulfides. This process is applied to waste treatment and decontamination (Pathak et al, 2009). It has also been used in mining for over 20 years (Hansford, 2013).

A. thiooxidans are non pathogenic (Kelly and Wood, 2000).

Current Research

Not much is known about the abiotic and enzymatic components of reduced inorganic sulfur compound (RISC) oxidation for acidophilic microorganisms. A study was done to combine old RISC models and literature with various experiments in partial oxidation and abiotic reactions. This new model, including the organism’s biomass stoichiometry, would provide assistance in predicting the growth of A. thiooxidans. It could also aid studies in biohydrometallurgical, which is the extraction of metal from ore, and environmental situations (Fazzini et al, 2013).

References

Fazzini, Roberto A.B.; Cortes, Maria P.; Padilla, Leandro; Maturana, Daniel; Budinich, Marko; Maass, Alejandro; Parada, Pilar (2013). "Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (RISCs) in Acidithiobacillus thiooxidans". Biotechnology and Bioengineering. 110 (8): 2242–2251. doi:10.1002/bit.24875.

Hansford, G. S.; T. Vargas (February 2001). "Chemical and electrochemical basis of bioleaching processes". Hydrometallurgy. 59 (2–3): 135–145. doi:10.1016/S0304-386X(00)00166-3. Retrieved 11 November 2013.

Jones, Daniel S (March 2005). "Geomicrobiology of highly acidic, pendulous biofilms ("snottites") from the Frasassi Caves, Italy" (PDF). www.carleton.edu. Carleton College. Retrieved 9 November 2013.

Jones, Daniel S; Heidi L Albrecht; Katherine S Dawson; Irene Schaperdoth; Katherine H Freeman; Yundan Pi; Ann Pearson; Jennifer L Macalady (January 2012). "Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm". ISME Journal. 6 (1): 158–170. doi:10.1038/ismej.2011.75. PMC 3246232free to read. PMID 21716305.

Khan, Shahroz; Haq, Faizul; Hasan, Fariha; Saeed, Kausar; Ullah, Rahat (2012). “Growth and Biochemical Activities of Acidithiobacillus thiooxidans Collected from Black Shale”. Journal of Microbiology Research 2012, 2(4): 78-83 DOI: 10.5923/j.microbiology.20120204.03.

Kelly, Donovan P.; Wood, Ann P. (2000). "Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov". International Journal of Systematic and Evolutionary Microbiology. 50: 511–516. doi:10.1099/00207713-50-2-511.

Pathak, Ashish; Dastidar, M.G.; Sreekrishnan, T.R. (2009). “Bioleaching of heavy metals from sewage sludge”. Journal of Environmental Management. Volume 90, Issue 8, June 2009, Pages 2343–2353.

Valdes, Jorge; Francisco Ossandon; Raquel Quatrini; Mark Dopson; David S. Holmes (2011). "Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillusgenus". Journal of Bacteriology. 193 (24): 7003–7004. doi:10.1128/JB.06281-11. PMC 3232857free to read. PMID 22123759. Waksman, Selman A.; Joffe, J. S. (1922). "Microorganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil". Journal of Bacteriology. 7 (2): 239–256.

Author

Page created by Catherine List, Molly Norris, Lindsey Paul, and Blake Torchon, students of Dr. Urakawa Hidetoshi at Florida Gulf Coast University.