Ralstonia eutropha

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Ralstonia eutropha

Classification

Higher order taxa

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Cupriavidus

Species

NCBI: Taxonomy

Thermoplasma volcanium

Description and significance

Thermoplasma volcanium can be isolated from coal refuse piles, solfatara fields, and hot springs. This microbe is thermophilic and acidophilic. It lives in a high temperature environment in the range of 33˚C to 67˚C with the optimum at 60˚C. Even though it survives at this high temperature, it is still the lowest among archaea. Additionally, it only survives in acidic environment with pH between 1.0 and 4.0, with the optimum at pH of 2.0. Thermoplasma cells lyse at neutral pH. Research has shown that Thermoplasma volcanium may be the host cell of the endosymbrosis theory of eukaryotic cells. Hence, the genome is sequenced to confirm this hypothesis.

Genome structure

Thermoplasma volcanium has a circular DNA with 1,584,804 nucleotides. It does not contain any plasmids. However, it possesses about 70 proteins not found in any other archaea’s genome.

Cell structure and metabolism

This microbe has a unique cell membrane that contains tetraether lipids. It lacks any kind of cell wall, which causes it to have irregular shapes and is capable of assuming different shapes. The microbe uses multiple flagella for high motility. Thermoplasma volcanium is heterotrophic and therefore requires it to obtain nutrients from other organisms especially those who cannot survive in acidic or high temperature environments. Depending on its living conditions, the microbe is both anaerobic and aerobic. It is anaerobic in the presence of elemental sulfur.

Ecology

Due to its evolutionary ties to eukaryotes, Thermoplasma genus can be used as model organism for researches.

Pathology

There is no known pathogen among different strains of Thermoplasma volcanium.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen and Kit Pogliano