Anaplasma phagocytophilum

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Anaplasma phagocytophilum

Classification

Higher order taxa

Bacteria; proteabacteria; alphaproteobacteria; rickettsiales; anaplasmataceae; Anaplasma; phagocytophium group (2)

Species

NCBI: Taxonomy

Anaplasma phagocytophilum; Anaplasma marginale; Anaplasma platys(2)

Description and significance

Anaplasma phagocytophilum is an intracellular obligate pathogen. It is widely distributed and can be found in North America, Europe, and Asia. Anaplasma phagocytophilum causes the disease Human granulocytic ehrlichiosis(HGE) and is most often spread through tick bites and is thus widely studied. The bacterium infects and colonizes neutrophils in host organisms, often leading to immunodeficiency diseases(1). The Human granulocytic ehrlichiosis pathogen was first described in 1994 in patients in Wisconsin and Minnesota(14). Ticks collected from the area of infection were also discovered to be carriers of the HGE pathogen(14). The infectious agent, first classified as Ehrlichia phagocytophila has recently been reclassified as Anaplasma phagocytophilum(14).

Genome structure

Anaplasma phagocytophilum has one circular genome composed of 1471282 base pairs, composing 1264 protein genes (4). Anaplasma phagocytophilum contains no known plasmids (8).

Cell structure and metabolism

Anaplasma phagocytophilum is a small gram negative bacterium of 0.2-2 micrometer diameter(5). It is a obligate intracellular pathogen and replicates within a host cell vacuole to form a morula microcolony(5). On the membrane surface of Anaplasma phagocytophilum can be found its major antigenic membrane proteins p44 and msp2 both of which are approximately 44-kDa in size(13). These two membrane proteins play a vital role in Anaplasma phagocytophilum virulence. The bacterium has a Type-IV secretion apparatus by which it is able to transfer materials between itself and the host(12). Unlike many gram negative bacterium, Anaplasma phagocytophilum lacks a peptidoglycan layer on their outer membrane(7). In addition, they lack the genes necessary for the biosynthesis of lipid A and peptidoglycan, resulting in very fragile cells that are highly susceptible to stress(7). Anaplasma phagocytophilum is a disease causing intracellular bacterium in dogs, humans, horses and ruminants(3). It lacks lipopolysaccharide biosynthetic machinery(12). The bacterium resides in host endosomes whereby the obtain the nutrients sufficient to carry out binary fission(12). Due to the lack of the ability to synthesize peptidoglycan, Anaplasma phagocytophilum rely on membrane cholesterol to maintain physical integrity(7). Anaplasma phagocytophilum also lack of genes related to the biosynthesis or modification of cholesterol or related sterols(7). All cholesterols are therefore are directly taken from exogenous sources without extensive modification before incorporation into the membrane(7). Anaplasma phagocytophilum is able to carry out major metabolic pathways including glycolysis, citric acid cycle, pentose phosphate pathway(16). It is able to metabolize saccharides such as pentose, fructose, and mannose into metabolic intermediates(16).

Ecology

Anaplasma phagocytophilum is distributed widely throughout vast geographical regions. In North America, it is most common in the north-east, upper Midwest and northern California in the United States(5). It is also discovered in several European and Asian countries(1). It is prevalent in regions with tropical to sub-trophical climate (10). Anaplasma phagocytophilum can be successfully cultured at 37 degrees Celcius(Park). The primary host of Anaplasma phagocytophilum in North America is the white-footed mouse with human beings as merely accidental hosts(9). A wide range of mammals such as horses, cows, and sheeps can serve as host for the bacterium(5).

Pathology

Anaplasma phagocytophilum is the cause of Human granulocytic ehrlichiosis. This is a prevalent human tickborne zoonosis of the neutrophils (1). The pathogen persists within the polymorphonuclear leucocytes(1). The disease was first identified in 1990 in a patient in Wisconsin (1). Anaplasma phagocytophilum infection in humans delay the onset of apoptosis in neutrophils, allowing for more effective infections of the neutrophils(5). Anaplasma phagocytophilum also causes an increase in IL-8, a neutrophil chemoattractant that increases the phagocytosis of neutrophils. Studies suggest that this is to increase bacterium dissemination into neutrophils(5). These permutations to the neutrophils can lead to immunological changes, making the host more susceptible to oppurtunistic infections(1). Human granulocytic anaplasmosis is characterized by, but not limited to, symptoms of malaise, fever, myalgia, meadache, gastrointestinal tract involvement (nausea, vomitting, diarrhea) and involvement of the respiratory tract (cough, pumonary infiltrates) (1). Other injuries to the body sometimes include skin rash, leukopenia, thrombocytopenia, and damage to the liver(1). Anaplasma phagocytophilum also causes ehrlichiosis in other species including domesticated animals such as horses, sheeps, and cattles (10). Similar to human granulocytic anaplasmosis, these forms of anaplasmosis are caused by the bacterium transmitted via tick bites (10).

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen and Kit Pogliano