Nocardia cyriacigeorgica

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Nocardia cyriacigeorgica

Classification

Higher order taxa


Domain: Bacteria

Phylum: Actinobacteria

Class: Actinobacteridae

Subclass: Actinomycetales

Order: Corynebacterineae

Suborder: Nocardiaceae

Family: Nocardia

Strain: Nocardia cyriacigeorgica

Species

NCBI: Taxonomy

Genus species: Nocardia Cyriacigeorgica
Other Names: Nocardia cyriacigeorgici, Nocardia cyriacigeorgica corrig

Description and significance

Nocardia cyriacigeorgica is an aeorbic, gram-positive, partially acid-fast, partially branched bacteria which primarily resides in soil, characterized by dry white colonies. Cyriacigeorgica, the species name, is named after the German town Gelsenkirchen, where the strain was first isolated (10). In 2001, Yassin et al. studied strain IMMIB D-1627, isolated from a patient with chronic bronchitis, and classified it as Nocardia cyriacigeorgici by utilizing a series of biochemical tests and phylogenetic evidence (7). Its genus name is due to scientist Edmond Nocard, who first isolated a aerobic actinomycete from cattle in 1888; two years later he reported the first case of human infection (4). N. Cyriacigeorgica, until recently, was believed to be an emerging pathogen. As of July 2007, Pactricia S. Conville and Frank G. Witebsky at the Department of Laboratory Medicine at the NIH utilized DNA-DNA hybridazation method to conclude that Nocardia asteroides VI strains belong to the Nocardia cyriacigeorgica species (2). Nocardia asteroides drug pattern VI was not named but was identified by its reference number ATCC 14759 based on drug susceptibility patterns(2); Wallace et al discovered that strain VI showed resistance to penicillin and susceptibility to broad-spectrum cephalosporins (15). It was later placed into subspecies N. asteroides sensu stricto along with N. asteroides I, and IV, and is determined to be predominantly human pathogens (13). Additionally, N. asteroides IV can be also referred to as N. asteroides complex which also includes N. Farcinica, N. Nova, and N. Abscessus(14). As a frequent threat to immunosuppressed individuals today due to its intrinsic multiple drug resistant nature, its genomic structure as well as cell structure are studied to find the optimal choice of treatment.

Genome structure

The genomic structure for Nocardia cyriacigeorgica is privately funded and not open to the public (16). N. cyriacigeorgica is 99.5% similar in HSP gene sequence as N. asteroides drug pattern VI, with only two base differences in a 373-bp region; the amino acids sequences are identical (2). Recent DNA hybridazation studies have showed that the two are related, and now believed to belong to the same species. Since the gemonic structure for Nocardia cyriacigeorgica is private, the following information denotes the genomic information of N. asteroides. There are currently 78 clinical isolates of N. asteroides, and it is important to note that type VI differs from the rest of the strains in that it is resistant to ampicillin but susceptible to extended-spectrum cephalosporins and imipenem (13). The total genome size of N. asteroides is 7.5 Mb with a large linear plasmid of 220 kb (11). To date, the only complete genome that is available to the general public is Nocardia farcinica (17), partly due to its homogeneous nature.
Nocardia farcinica has one circular chormosome and two circular plasmids. Its circular chromosome consists of 6,021,225 bp and two circular plasmids, pNF1 and pNF2 consists of 184,027bp and 87,093 bp respectively. Since Nocardia farcinica is a soil bacteria, it contains various proteins which helps it to adapt to diverse soil environment, including short-chain dehydrogenases and ABC transporters. However, it lacks PE/PPE/PGRS family proteins, which is for pathogenicity and intravellular growth, due to its ability to inhabit both soil and tissue. Additionally, gene duplication was found as one of the reasons for its drug resistance abilities. N. farcinica possesses two β subunits for RNA polymerase, designated rpoB and rpoB2. This is first case ever reported in which there are two rpoB genes on one bacterial genome (15).

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

(1) "Nocardia Cyriacigeorgica". NCBI Taxonomy Browser. [1].

(2)Conville, Patricia S, Witebsky, Frank G., “Organisms Designated as Nocardia asteroides Drug Pattern Type VI Are Members of the Species Nocardia cyriacigeorgicaJournal of Clinical Microbiology. July, 2007. p. 2257-2259 Link to Article

(3)Kageyma, A., K. Yazawa, J. Ishikawa, K. Hotta, K. Nishimura & Y. Mikami, “Nocardial infections in Japan from 1992 to 2001, including the first report of infection by Nocardia transvalensisEuropean Journal of Epidemiology . 2004 19: p. 383-389Link to Article

(4)Elsayed, S., Kealey, A., Coffin, C.S., Read, R., Megran, D., & Zhang, K., “Nocardia cyriacigeorgica Septicemia” Journal of Clinical Microbiology. Jan. 2006, p. 280-282 Link to Article

(5)Barnaud, G., Deschamps C., Manceron, V., Mortier, E., Laurent, F., Bert, F., Boiron, P., Vinceneux, P., & Branger, C. “Brain Abscess Caused by Nocardia cyriacigeorgica in a Patient with Human Immunodeficiency Virus Infection" Journal of Clinical Microbiology. Sept. 2005 p. 4895-4897 Link to Article

(6)Palaniappan, C., Gunasekaran, M., “Purification and Properties of Glutamine Synthetase from Nocardia asteroides" Current Microbiology . 1995, vol. 31, p. 193-198Link to Article

(7)Yassin, A.F., Rainey, F.A., & Steiner, U., “Nocardia cyriacigeorgici sp. Nov." International Journal of Systematic and Evolutionary Microbiology . 2001, vol. 51 p. 1419-1423 Link to Article

(8)Redenbach, M., Scheel, J., & Schmidt, U., “Chromosome topology and genome size of selected actinomycetes species” Antoine van Leeuwenhoek International Journal of General and Molecular Microbiology. 2000, Vol. 78 p. 227-235 Link to Article

(9)Palaniappan, C., Gunasekaran, M., “Ammonium assimilation in Nocardia asteroidesMycopathologia . 1993 Vol: 124, p. 69-72Link to Article

(10)Poirel, L., Laurent, F., Naas, T., Labia, R., Boiron, P., & Nordmann, P., “Molecular and Biochemical Analysis of AST-1, a Class A β-Lactamase from Nocardia asteroides Sensu Stricto” Antimicrobial Agents and Chemotheraphy. Mar. 2001 p. 878-882Link to Article

(11)Saubolle, M.A., & Sussland, D., “MINIREVIEW-Nocardiosis: Review of Clinical and Laboratory Experience” Journal of Clinical Microbiology. Oct. 2003 p. 4497-4501Link to Article

(12)Wallace, R.J. JR., Steele, L.C., Sumter, G., & Smith, J.M., “Antimicrobial susceptibility patterns of Nocardia asteroidesAntimicrobial Agents and Chemotheraphy. Dec. 1988, p. 1776-1779Link to Article

(13)Genoscope, http://www.genoscope.cns.fr/agc/mage/wwwpkgdb/MageHome/index.php?webpage=mage

(14)Ishikawa, J., Hoshino, Y., Ishino, k., Kurita, H., Chiba, K., Fujii, S., Hattori M., Yamashita, A., Mikami, Y., Yazawa, K., and Takeda, k. “Nocardia Farcinica Genome Project Page” Link to Page

(15)Ishikawa, J., Yamashita, A., Mikami, Y., Hoshino, Y., Kurita, H., Hotta, K., Shiba, T., and Hattori, M., “The Complete genomic sequence of Nocardia farcinica IFM 10152” Communicated by Satoshi Omura, Kitasato Institute, Tokyo, Japan. Aug. 2004Link to Article

(16)Beaman, B.L., and Beaman L., “Nocardia species: host-parasite relationships” Clinical Microbiology Review . April 1994, vol. 7(2), p. 213-264Link to Article

Edited by Yizhao Li student of Rachel Larsen