Methanococcus voltae

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Methanococcus voltae

Classification

Higher order taxa

Domain: Archaea

Phylum: Euryarchaeota

Class: Methanococci

Order: Methanococcales

Family: Methanococcaceae

Genus: Methanococcus

Species

NCBI: Taxonomy

Genus species: Methanococcus voltae

Other Name: Methanococcus voltaei

Strain: Methanococcus voltae PS

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.


(1) "Methanococcus voltae". NCBI Taxonomy Browser. 27 August 2007. [1]

(2) [2]

(3) Tumbula, D., and Whitman. W., “Genetics of Methanococcus: possibilities for functional genomics in Archaea.” Molecular Microbiology 1999. Volume 33: 1-7.

(4) [3]

(5) Zhu W, Reich CI, Olsen GJ, Giometti CS, Yates JR 3rd., J. Proteome Res. 2004. Volume 3: 538-548.

(6) [4] Albers, SV. (2006). Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nature reviews. Microbiology, 4(7), 537-547.

(7) Sleytr, UB., Egelseer, E., Ilk, N., Pum, D., and Schuster, B., “S-Layers as a basic building block in a molecular construction kit.” 2007. Volume 274(2): 323-334.

(8) [5] Heinicke, I. (2004). Mutational analysis of genes encoding chromatin proteins in the archaeon Methanococcus voltae indicates their involvement in the regulation of gene expression. Molecular genetics and genomics, 272(1), 76-87.

(9) [6] Ng, SYM, & Ng. (2007). Archaeal signal peptidases. Microbiology, 153(2), 305-314.

(10) [7] Lang, AS, & LANG. (2007). Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends in Microbiology, 15(2), 54-62.

(11) [8]

(12) [9]Niess, UM. (2004). Dimethylselenide demethylation is an adaptive response to selenium deprivation in the archaeon Methanococcus voltae. Journal of bacteriology, 186(11), 3640-3648.

(13) Dawes, Edwin. Microbial Energetics. New York: Blackie. 1986

(14) Reeve, J.N. “Molecular biology of Methanogens.” Annu Rev Microbiol. 1992. Volume 46: 165–191.

(15) [10]Allers, T. (2005). Archaeal genetics - The third way. Nature reviews. Genetics, 6(1), 58-73.

(16) [11]

Edited by student of Rachel Larsen