Desulfovibrio desulfuricans

From MicrobeWiki, the student-edited microbiology resource

Classification

Higher order taxa

Domain Bacteria; Phylum Proteobacteria; Class Deltaproteobacteria; Order Desulfovibrionales; Family Desulfovibrionaceae; Genus Desulfovibrio (Madigan et al., 2012).

Species

Desulfovibrio desulfuricans (also known as strain ND 132)

http://aem.asm.org/content/77/12/3938/F1.large.jpg

Description and significance

16S Ribosomal RNA Gene Information

Genome Structure (if the genome exists)

Cell structure and metabolism

Ecology and Pathogenesis

Current Research

Desulfovibro desulfuricans strain ND132 presents an excellent opportunity for the study of mercury methylation because while being a typical anaerobic mesophilic bacterium with wide tolerance of pH and salinity, it also grows well with fumurate as electron acceptor, which prevents sulfide inhibition of mercury methylation (Gilmour et al., 2011). Its genome sequencing allows comparative transcriptomic and proteomic study against other Desulfovibrio species (Gilmour, et al., 2011) Additional research includes the effects of large colony blooms in seawater and effects of infections in the human body by D. desulfuricans. One of the main research proposals currently being performed on D.desulfuricans is the study of how methylmercury production occurs with this organism’s cellular respiration. D.desulfuricans is the only organism in which pathways of its methylation have been somewhat defined (Gilmour et. al., 2011). This team of scientists used enriched stable mercury isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. A large colony of strain ND132 may cause harm to someone who comes in contact with the colony as methylmercury is known to cause brain and nervous system damage. There is still much research that can be done on this organism which may prove beneficial to human society as we learn about new ways to prevent corrosion caused by ND132, or as we may be able to utilize their respiration in some wastewater treatment plants.

References

Brown, S. D., Gilmour, C. C., Kucken, A. M., Wall, J. D., Elias, D. A., Brandt, C. C., … Palumbo, A. V. (2011). Genome Sequence of the Mercury-Methylating Strain Desulfovibrio desulfuricans ND132. J. Bacteriol, 193(8): 2078-2079. Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and environmental microbiology, 50(2), 498-502. Desulfovibrio desulfuricans ND132. (n.d.). Retrieved October 02, 2016, from http://www.p2cs.org/page.php?base=Desd2DB Desulfovibrio desulfuricans G20. (n.d.). Retrieved October 03, 2016, from http://jcm.asm.org/content/50/1/199.full http://genome.jgi.doe.gov/desde/desde.home.html Gilmour, C., Elias, D., Kucken, A., Brown, S., Palumbo, A., Schadt, C., & Wall, J. (2011, June). Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation. Applied and environmental microbiology, 77(12). doi:10.1128/AEM.02993-10. Jay, J., Murray, K., Gilmour, C., Mason, R., Morel, F., Roberts, A., & Hemond, H. (2016, October). Mercury Methylation by Desulfovibrio desulfuricans ND132 in the Presence of Polysulfides. Applied and Environmental Microbiology, 82(20). Doi:10.1128/AEM.68.11.5741-5745.2002. http://www.nature.com/articles/srep12872 Madigan, M. T., Martinko, J. M., Stahl, D. A., & Clark, D. P. (2012). Brock biology of microorganisms. Boston [etc.: B. Cummings Mardis E. R. 2008. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9:387–402. Podar, M., Gilmour, C. C., Brandt, C. C., Soren, A., Brown, S. D., Crable, B. R., . . . Elias, D. A. (2015). Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Rani, A., Rockne, K. J., Drummond, J., Al-Hinai, M., & Ranjan, R. (2015, August 14). Geochemical influences and mercury methylation of a dental wastewater microbiome [Abstract]. Scientific Reports, 5(12872). doi:10.1038/srep12872 Steger, J., Vincent, C., Ballard, J., Krumholtz, L. (2016, October). Desulfovibrio sp. Genes involved in the Respiration of Sulfate during Metabolism of Hydrogen and Lactate. Applied and Environmental Microbiology, 82(20). Doi: 10.1128/AEM.68.4.1932-1937.2002. Voordouw, G. (1995, August). The Genus Desulfovibrio: The Centennial. Applied and Environmental Microbiology, 61(8). Pg 2813-2819. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388543/pdf/hw2813.pdf Verstreken, I., Lalemanb, W., Wauters, G., & Verhaegen, J. (2012). Desulfovibrio desulfuricans bacteremia in an immunocompromized host with a liver graft abd ulcerative colitis. American Society for Microbiology. 54(11). doi:10.1128/JCM.00987-11.

Author

Page created by Cameron Garcia, Christina Lopardo, Luka Ndungu, Rachel Smolinski, students of Dr. Hidetoshi Urakawa at Florida Gulf Coast University.