Aeropyrum pernix
A Microbial Biorealm page on the genus Aeropyrum pernix
Classification
Higher order taxa
Archaea; Crenarchaeota; Thermoprotei; Desulfurococcales; Desulfurococcaceae, Desulfurococcaceae; Aeropyrum [Others may be used. Use NCBI link to find]
Species
NCBI: Taxonomy |
Aeropyrum pernix
Description and significance
The Aeropyrum pernix is an aerobic archaeon and is spherical in shape with a diameter of about 1 micro meters. It grows optimally at pH 7.0 and at a temperature of 95 degrees celcius and a salinity of 3.5%. This archaeon is important enough to have its genome sequenced because it can help answer how the Aeropyrum pernix is able to consume oxygen in such an extreme environment. Only anaerobic Archaea was found in such living conditions, until the discovery of the Aeropyrum pernix. Aeropyrum pernix was isolated at a hydrothermal vent at kodakara island in Kagoshima Prefecture by a team of researchers at Kyoto University in 1993. The whole genome was sequenced by using the shotgun sequencing approach. Include a picture or two (with sources) if you can find them.
Genome structure
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?
Cell structure and metabolism
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
Ecology
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
References
[1] Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1.
[2] Gene expression and characterization of two 2-oxoacid:ferredoxin oxidoreductases from Aeropyrum pernix K1.
[3] Identification of the first archaeal oligopeptide-binding protein from the hyperthermophile Aeropyrum pernix.
Edited by Daniel Pak, student of Rachel Larsen and Kit Pogliano