Kocuria rhizophila
Classification
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Micrococcales
Family: Micrococcaceae
Species
NCBI: Taxonomy |
Kocuria rhizophila
Description and Significance
Describe the appearance, habitat, etc. of the organism, and why you think it is important.
(editing in progress)
Use in laboratory testing
The Kocuria rhizophila strain ATCC 9341 has been used in quality control for sterility testing, as a test for the effectiveness of antibiotics and fungicides, and for doxycycline, tetracycline, and chloramphenicol susceptibility testing since 1966 under the designation Micrococcus luteus[4]. This designation was corrected to the current name Kocuria rhizophila in 2003, and its use in these forms has continued since the designation change[4].
Use in multi-metal contaminated soils
Application of Kocuria rhizophila alongside citric acid has been shown to facilitate metal extraction from soil by plants[3]. The level of metal extraction is most fit for removing multi-metal contamination from soils, and it has been demonstrated to be effective in accumulating Cd, Cr, Cu, and Ni in Glycine max[3].
Ionizing radiation resistance
The Kocuria rhizophila strain PT10 has been shown to be resistant to ionizing radiation, isolated from roots of Panicum turgidum from the Tunisian Sahara[6]. Study of the PT10 strain has allowed for identification of mechanisms that generate ionizing radiation resistance[6].
Salt stress tolerance
The Kocuria rhizophila strains Y1 and 14ASP have been shown to enhance salt stress tolerance in maize and Oxalis corniculata respectively[7,9]. The strain Y1 is able to tolerate up to 10% environmental NaCl, and it transfers this tolerance to maize when inoculated[7]. Inoculation with strain Y1 in maize is associated with increased salt stress tolerance, changes in presence of plant hormones IAA and ABA, and increased gene expression of antioxidant and salt tolerance genes[7].
Appearance
Appearing to have a rigid cell wall, Kocuria rhizophila is a gram-positive cocci[8]. Arrangements of K. rhizophila come in pairs, shorts chains, tetrads, cubical packets of eight, and irregular clusters[8]. K. Rhizophila usually form 2-3 millimeter whitish, round, convex colonies on initial isolation[8]. After prolonged incubation, K. Rhizophila might develop a yellowish pigmentation[8,12]. Under strict aerobic conditions the colonies progress to be dull and creamy with a yellow tinge[12].
Genome Structure
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?
Cell Structure, Metabolism and Life Cycle
Interesting features of cell structure; how it gains energy; what important molecules it produces.
Ecology and Pathogenesis
Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
(editing in progress)
Habitat
Kocuria Rhizophila is adapted to live in is the rhizosphere, the soil surrounding plant roots[1]. K. rhizophila has been identified alongside and inside plant roots from a wide variety of environments including maize, Oxalis corniculata, Panicum turgidum, and Typha angustifolia[6,7,9,2]. K. rhizophila has been identified as a member of a marine biofilm on a ship hull[11]. TheK. rhizophila isolated from this biofilm produced EPS with a higher carbohydrate and protein content than the other bacteria isolated from the same biofilm[11]. It has also been identified in Domiati cheese, a type of soft white salty cheese, among other salt-tolerant bacteria[14].
Pathogenesis
Kocuria Rhizophila has also been found to be an opportunistic pathogen. The isolation along with the significance of this bacteria warrants great caution[12]. While it’s presence does warrant caution, K. Rhizophila’s residency does not confirm infection[12]. K. Rhizophila is as normal as a flora of skin and mucous membranes[12]. K. Rhizophila is ignored as a contaminant by laboratories because it is considered as a non pathogenic bacteria[12]. While it can be found in people and animals, it can be found to cause infection of pancreatitis and sepsis[12].
References
(editing in progress)
5
Author
Page authored by Timothy Biewer-Heisler, Joseph Bell, and Linnaea Awdey; students of Prof. Jay Lennon at IndianaUniversity.