User:Bca2592

From MicrobeWiki, the student-edited microbiology resource


This student page has not been curated.
Legend. Image credit: Name or Publication.


Classification

Archaea; Euryarchaeota; Stenosarchaea; Methanomicrobia; Methanosarcinales; Methanosarcinales incertae sedis; GOM Arc I cluster


Species

NCBI: [1]


Candidatus Ethanoperedens thermophilum

Description and Significance

Candidatus Ethanoperedens thermophilum is a thermophilic genus of archaea known to mediate the anaerobic oxidation of ethane in cold seeps and hydrothermal vents. Although previously challenging to study due to the inherently slow growth of this organism, this archaeon has recently been cultured using hydrothermal sediments of the Guaymas Basin (Gulf of California) with ethane as the substrate in order to further understand the mechanisms of archaeal alkane degradation (Hahn et al., 2020).


Describe the appearance, habitat, etc. of the organism, and why you think it is important.

Genome Structure

Similar to other microorganisms, the genome of Candidatus Ethanoperedens thermophilum is a single, circular chromosome. In order to understand the genomic makeup of the GoM-Arc1 genome, cultures were performed in both 37 degrees celcius and 50 degrees celcius resulting in a 76.2% genome comompletedness and 100% complete genetic sequence, respectivey. Due to their 98% similarity, both samples were able to be fully sequenced after long-read DNA sequenceing.

The total length of the genome was found to be 1.25Mb with a protein count of 1,274 and a gene count of 1,329. There is also a GC content of 41.3%. When comparing metagenome-assembled genomes (MAGs) and 16S rRNA of this novel organism to others of the GoM-Arc1 clade derived from the Guaymas Basin and the Gulf of Mexico it is apparent that they have similar gene contents (over 90% average nucleotide identity (ANI) and 99.5% 16S rRNA gene identity) - ultimately suggesting that these GoM-Arc1 archaea are ethane oxidizers.


An interesting fact about this organism is that it has the ability to reverse its metabolism of ethane to CO2 to CO2 to ethane which illuminates potential for future experiments regarding decreasing atmospheric carbon emmisions in industry.

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.


Ecology and Pathogenesis

Researchers discovered Candidatus Ethanoperedens thermophilum, a previously unknown microbe, in the seafloor of the Guaymas Basin at a depth of 2000 meters in the Gulf of California. This organism thrives in the hot vent environment provided by hydrothermal vents where it is of no concern as a possible pathogen, and in consortium with a sulfate-reducing bacteria, it has the ability to totally degrade ethane.

The discovery of this archaeon is significant for two primary reasons: it is the first ethane-degrading archaea with the ability to be cultured in the lab within a week and it is able to reverse its consumption of ethane to CO2 in order to produce ethane from CO2. Although the exact mechanism of this is not well understood, it is possible that - with continued research - it will be implemented as a way to extract CO2 from the atmosphere.


Habitat; symbiosis; biogeochemical significance; contributions to environment.

If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

References

Hahn CJ, Laso-Pérez R, Vulcano F, Vaziourakis KM, Stokke R, Steen IH, Teske A, Boetius A, Liebeke M, Amann R, Knittel K, Wegener G. "Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane. mBio. 2020 Apr 21;11(2):e00600-20. doi: 10.1128/mBio.00600-20. PMID: 32317322; PMCID: PMC7175092.

Author

Page authored by _____, student of Prof. Bradley Tolar at UNC Wilmington.