Acidilobus saccharovorans

From MicrobeWiki, the student-edited microbiology resource
This student page has not been curated.
Legend. Image credit: Name or Publication.


Classification

Thermoproteota; Thermoprotei; Acidilobales; Acidilobaceae


Species

NCBI: [1]



Acidilobus saccharovorans

Description and Significance

A. saccharovorans has a coccus shape with a bundle of flagella. This archaea also has a thick S-layer. A. saccharovorans was isolated from a terrestrial hot spring.

Genome Structure

A. saccharovorans consists of a circular genome with 1,496,453 base pairs. A. saccharovorans have no extrachromosomal elements and have one copy of the 16S-23S rRNA operon. There are 246 genes that are unique for A. saccharovorans.

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.

Acidilobus saccharovorans is an anaerobic, organotrophic, thermoacidophilic archaeon. Glucose in A. saccharovorans is metabolized to pyruvate through the Embden-Meyerhof pathway or the Enter-Doudiroff pathway. A. saccharovorans may conserve energy by doing oxidative phosphorylation.

Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment.

If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

A. saccharovorans are found on hot springs. They are believed to help with the complex oxidation of organic material.

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Mardanov AV, Svetlitchnyi VA, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG. The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs. Appl Environ Microbiol. 2010 Aug;76(16):5652-7. doi: 10.1128/AEM.00599-10.

Author

Page authored by Leah Rotte, student of Prof. Bradley Tolar at UNC Wilmington.