Dinoflagellate Bioluminescence

From MicrobeWiki, the student-edited microbiology resource

Introduction

Select a topic about genetics or evolution in a specific organism or ecosystem.
Overall text length (all text sections) should be at least 1,000 words (before counting references), with at least 2 images.

The topic must include one section about microbes (bacteria, viruses, fungi, or protists). This is easy because all organisms and ecosystems have microbes.

Compose a title for your page.
Type your exact title in the Search window, then press Go. The MicrobeWiki will invite you to create a new page with this title.

Open the BIOL 116 Class 2024 template page in "edit."
Copy ALL the text from the edit window.
Then go to YOUR OWN page; edit tab. PASTE into your own page, and edit.

Figure 1. Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.[1].


At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of:
Double brackets: [[
Filename: PHIL_1181_lores.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.
Closed double brackets: ]]

Other examples:
Bold
Italic
Subscript: H2O
Superscript: Fe3+



Section 1 Genetics

Section titles are optional.
Include some current research, with at least one image. Call out each figure by number (Fig. 1).

Sample citations: [1] [2]

A citation code consists of a hyperlinked reference within "ref" begin and end codes.

[3]

For multiple use of the same inline citation or footnote, you can use the named references feature, choosing a name to identify the inline citation, and typing [4]

[4]

Second citation of Ref 1: [1]

Here we cite April Murphy's paper on microbiomes of the Kokosing river. [5]

Section 2 Mechanism of Bioluminescence

Bioluminescence in dinoflagellates is triggered by physical agitation, which causes an influx of protons into specialized organelles called scintillons, which are where bioluminescence takes place. Scintillons will protrude into very acidic vacuoles, so when stress is applied a mechanotransduction pathway, where mechanical stimuli are converted to biochemical signals, is activated, causing an action potential along the vacuole and scintillon membranes. This action potential triggers the opening of voltage gated proton channels, allowing protons to flow from the acidic vacuole into the scintillons.

[6]

Dinoflagellates only produce light when a luciferase enzyme catalyzes the oxidation of a luciferin. However, in high pH environments the a-helices of luciferase block access of the luciferin substrate to the catalytic β-barrel where the oxidation occurs. However at a low pH, such as that caused by the influx of protons into the scintillons, the a-helices move out of the way, allowing the reaction to proceed. The exact mechanism of this is unproven, but the leading hypothesis suggests that it is due to the protonation of several histidines in the polypeptide, as well as a lysine residue. These protonations cause electrostatic repulsion between the histidine-cations, leading to the conformational change uncovering the active site in the β-barrel. [7]

Once the active site is uncovered, luciferin is oxidized by luciferase. This causes the release of photons with a wavelength of about 475 nm, which is perceived by humans as a flash of blue light. How exactly this works is still unknown. [6]

Include some current research, with a second image.

Here we cite Murphy's microbiome research again.[5]

Conclusion

You may have a short concluding section. Overall, cite at least 5 references under References section.

References


Edited by [Author Name], student of Joan Slonczewski for BIOL 116, 2024, Kenyon College.