Methanococcus maripaludis

From MicrobeWiki, the student-edited microbiology resource
Revision as of 18:28, 5 June 2007 by Adeleon (talk | contribs)

Classification

Higher order taxa:

Archaea; Euryarchaeota; Methanococci; Methanococcales; Methanocaldococcaceae; Methanococcus; Methanococcus maripaludis

Species:

NCBI: Taxonomy Genome

Methanococcus maripaludis

Description and significance

Methanococcus maripaludis was originally isolated from a salt-marsh sediment in South Carolina. It is a member of the kingdom Archaea. More specifically, it is a member of the methanogenic archaea. “Methanogens are obligate anaerobes that carry out the reduction of carbon dioxide to methane using molecular hydrogen as the reductant” (1). This means that this species undergoes anaerobic metabolic processes with the final product being methane, utilizing H2 as an electron donor for CO2 reduction to methane.

Methanococcous maripaludis is a significant microbe because of its excellent laboratory growth behavior. This anaerobic archaea is helpful in “development of methods for growth on solid medium, enriching auxotrophic mutants, efficient transformation, and random insertional inactivation of genes” (2). It is because of these improvements to laboratory techniques that Methanococcus maripaludis is a popular archaebacteria for genetic manipulation.

Genome structure

The genome of Methanococcus maripaludis is similar to the genome of the more common Methanococcus jannaschii, with the difference being that Methanococcus maripaludis lacks inteins, DNA elements that are inserted in-frame and translated together with their host proteins. It contains a circular genome of 1.66Mb in length, with no extra-chromosomal elements. . This chromosome also contains 1,722 protein-coding genes and has a 33% Guanine-Cytosine content (GC content) (3).

Cell structure and metabolism

Methanococcus maripaludis is similar to Methanococcus voltae in its cell structure. “Methanococcus voltae is an archaebacterium and possess only a thin S-layer above the plasma membrane as its sole wall layer” (4). Unlike other Methanococcus species, Methanococcus maripaludis is a nitrogen fixing species.

Energy is generated via metabolic processes of this archaebacteria. This species is strictly anaerobic, meaning it can live in the absence of oxygen. Methane is the final product of the anaerobic metabolic processes of Methanogenesis maripaludis.

Ecology

“Methane formation occurs only under strictly anaerobic conditions” (5). Because of this, methanogenesis occurs only in environments that are anoxic, meaning environments that are abnormally low in or lacking oxygen. Archaea, in comparison to Eukaryotes, are able to grow under extreme conditions such as high temperature and high salt environments. Methanococcus is commonly found in geothermal habitats such as thermal vents. Methanococcus maripaludis is found in salt-marsh sediment on the southeastern coast of the United States.

Application to Biotechnology

As previously stated, methane is the final product of the anaerobic metabolic processes of Methanococcus maripaludis. This species is a commonly used archaeabacteria in laboratories for several reasons. One main reason why it is popular is because of the fact that is capable of rapid growth and it plates for single colonies with high efficiency. Another reason is because it has a relatively simple genome. Integrative and expression vectors as well as positive and negative genetic selection are a few of the genetic tools for Methanococcus maripaludis.

Current research

References

1. Dawes, Edwin. Microbial Energetics. New York: Blackie. 1986


2. Whitman et al. 1997. Development of genetic approaches for the methane-producing archaeabacterium Methanococcus maripaluis. Biofactors, Volume 6, Number 1: 37-46. http://www.ingentaconnect.com/content/ios/bio/1997/00000006/00000001/bio29;jsessionid=3ko9jad5p7srd.alice?format=print

3. John Leigh Lab. University of Washington Department of Microbiology. http://faculty.washington.edu/leighj/mm.html

4. Moat et al. Microbial Physiology, 4th edition. New York: Wiley-Liss. 2002

5. Brock et al. Biology of Microorganisms, 7th edition. New Jersey. 1994


Edited by Allen De Leon, student of Rachel Larsen at UCSD.