Thermofilum pendens
A Microbial Biorealm page on the genus Thermofilum pendens
Classification
Higher order taxa
Archaea; Crenarchaeota; Thermoprotei; Thermoproteales; Thermofilaceae [Others may be used. Use NCBI link to find]
Species
NCBI: Taxonomy |
Thermofilum pendens, Thermofilum pendens Hrk 5
Description and significance
Thermofilum pendens was first isolated from a solfataric hot spring in Iceland in the early 1980s (1). Since its discovery, T. pendens have also been isolated in solfatara environments. Thus, this archeabacteria can sustain life in a hot and slightly acidic environment making it a hyperthermophile and acidophile, or a thermoacidophile (2). Its optimum growth conditions are 85-90 degree C with a pH of 5-6 and 0.1 – 2% salinity (3, 7). Being an archea, T. pendens has the ability to provide heat resistance enzymes which can be applied in biotechnology. Furthermore, T. pendens is important to the evolutionary process because it the deepest branching lineage to the Eukaryote domain (6). According to a parsimonious phylogenetic tree for 16S rRNA, T. pendens is the out-group of the Crenarchaeota making it the closest evolutionary branch to the Eurakyota domain (7,9). Hence, newly sequenced organisms are compared to T. pendens’ genomes.
Genome structure
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?
Cell structure and metabolism
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
Ecology
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
References
Edited by student of Rachel Larsen