Mycobacterium leprae*
A Microbial Biorealm page on the genus Mycobacterium leprae*
Classification
Higher order taxa
Bacteria; Actinobacteria; Actinobacteria; Actinobacteridae; Actinomycetale; Corynebacterineae; Mycobacteriaceae
Species
NCBI: Taxonomy |
Mycobacterium leprae
Description and Significance
Describe the disease caused by this organism if it is a pathogen, or the natural macroscopic "field guide" appearance and habitat of your organism if it is not. What is or has been the impact your organism on human history or our environment?. How does it do this? How have we harnessed this power, or tried to prevent it? In other words, how do you know it if you see it, and how does its presence influence humans in the present, and historically? fds ¶ Mycobacterium leprae is named after Doctor Gerhard Armauer Hansen in 1873. Dr. Hansen discovered the bacteria in the nodules of leprosy patients and determined that it was the cause of the leprosy. Leprosy has been recorded as early as 600-400 B.C. Leprosy is found in countries world wide, but it is common in many countries with a tropical or sub-tropical climate such as Angola, Brazil, and India. In the United States, there are approximately 1000 cases reported and diagnosed each year. In 2004, according to the World Health Organization (WHO) there were an average of 150 cases of leprosy, with 69 new cases and 131 wide-spread cases. In 2005 the WHO reported that there were 286,063 new cases of leprosy worldwide. Mycobacterium leprae has two different forms in which it can express itself, Tuberculoid and Lepromatous. The difference between the two is that Tuberculoid is caused by a faster cellular response to the bacterium, causing disfigurement of the skin, sores, peripheral nerve damage, and progressive debilitation. Lepromatous is a slower cellular response large nodules and bumps on the skin.
Genome structure
Describe the size and content of the genome. How many chromosomes and plasmids? Circular or linear? Other interesting features? What is known about its sequence?
Cell structure, metabolism & life cycle
Provide a physical and biochemical description of the organism. What kind of organism is it, what does it look like, how is it built, what are its metabolic properties, how can it be identified, what is it's life cycle, &c. In other words, describe the organism from its perspective.
Ecology (including pathogenesis)
Describe its habitat, symbiosis, and contributions to environment. If it is a pathogen, how does this organism cause disease? Human, animal, plant hosts? Describe virulence factors and patient symptoms.
Interesting feature
Describe in detail one particularly interesting aspect of your organism or it's affect on humans or the environment.
References
Edited by the NC State University MB 103 class of 2007.