Clostridium botulinum

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Clostridium botulinum

Classification

Higher order taxa

Bacteria; Firmicutes; Clostridia; Clostridiales; clostridiaceae

Species

NCBI: Taxonomy

Clostridium Botulinum

Description and significance

The bacterium Clostridium botulinum is a rod-shaped organism of the genus Clostridium. Most commonly found in soil, C. botulinum are found to grow most efficiently in low-oxygen conditions. First discovered and isolated by Emile van Ermengem in 1896, C. botulinum survive by forming spores, remaining in a dormant state until environmental conditions arise that allow them to grow. The importance of sequencing the genome of Clostridium Botulinum lies in its ability to produce a toxin known as botulin, one of the most powerful known toxins that lead to to the paralytic illness known as botulism.

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by Brannon Peralta student of Rachel Larsen and Kit Pogliano