Bordetella pertussis Vaccine

From MicrobeWiki, the student-edited microbiology resource
Revision as of 22:28, 23 March 2015 by KMillar9515 (talk | contribs)

Whooping Cough


Background


Whooping Cough if an infection of the respiratory tract most commonly caused by the bacterium Bordetella pertussis, a small gram-negative bacterium [1]. This bacterium non-invasively adheres to the mucosal lining of the tracheobronchial tree. B. parapertussis and B. bronchiseptica are two additional pathogens that can present whooping cough symptoms; however, these infections tend to be far less severe in nature. The first accounts of the disease date back to the 16th century. Before the vaccine, cyclic epidemics occurred every 2-5 years [10]. The disease is most frequently diagnosed in children ages 1-5 and presents itself as a moderate to severe respiratory infection with characteristic “whooping” coughing fits followed by vomiting. The disease has an incubation period of 9-10 days and symptoms can persist several months after they first manifest [1]. When infants contract the disease, it can manifest as apnoea and cyanosis without any cough whatsoever. Infants have the highest rate of mortality due to the pertussis infection, a rate of 160 deaths per 100,000 cases [2]. In older children and adults the disease often manifests in unexpected and varying ways, making it difficult to diagnose [7].


Pathogenesis


Current Vaccine Options


DwP Vaccine



DaP Vaccine


Recent Vaccine Failures


Incidents


Differences in Vaccine Efficacy


Other Hypotheses for the Failures

The Search for Improvement

References

1. "Pertussis Vaccines: WHO Position Paper." Weekly Epidemiological Record 85.40 (2010): 385-400. Academic Search Premier. Web. 26 Feb. 2015.

2. Clark, Thomas A. "Changing Pertussis Epidemiology: Everything Old is New Again." The Journal of Infectious Diseases 209.7 (2014): 978-981. Web. 26 Feb. 2015.

3. Klein, Nicola P., Joan Bartlett, Bruce Fireman, Ali Rowhani-Rahbar, and Roger Baxter. "Comparative Effectiveness of Acellular Versus Whole-Cell Pertussis Vaccines in Teenagers." Pediatrics. 131.6 (2013): 1716-1722. Web. 26 Feb. 2015.

4. Riolo, Maria A., Aaron A. King, and Pejman Rohani. "Can vaccine legacy explain the British pertussis resurgence?" Vaccine. 31(2013): 5903-5908. Web. 26 Feb. 2015.

5. Robbins, John B., Rachel Schneerson, Joanna Kubler-Kielb, Jerry M. Keith, Birger Trollfors, Evgeny Vinogradov, and Joseph Shiloach. "Toward a new vaccine for pertussis." PNAS. 111.9 (2014): 3213-3216. Web. 26 Feb. 2015.

6. Donnelly, Sheila, Christine E. Loscher, Marina A. Lynch, and Kingston H.G. Mills. “Whole-Cell but Not Acellular Pertussis Vaccines Induce Convulsive Activity in Mice: Evidence of a Role for Toxin-Induced Interleukin-1β in a New Murine Model for Analysis of Neuronal Side Effects of Vaccination.” Infection and Immunity. 69.7 (2001): 4217-4223. Web. 15 Mar. 2015.

7. Mattoo, Seema and James D. Cherry. “Molecular Pathogenesis, Epidemiology, and Clinical Manifestations of Respiratory Infections Due to Bordetella pertussis and other Bordetella Subspecies.” Clinical Microbiology Reviews. 18.2 (2005): 326-382. Web. 15 Mar. 2015

8. Fine, Paul E. M. and Jacqueline A. Clark. “Reflections on the Efficacy of Pertussis Vaccines.” Reviews of Infectios Diseases. 9.5 (1987): 866-883. Web. 15 Mar. 2015

Edited by Kristina Millar, a student of Nora Sullivan in BIOL168L (Microbiology) in The Keck Science Department of the Claremont Colleges Spring 2014.