Chlamydophila pneumoniae: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
No edit summary
Line 18: Line 18:


==Description and Significance==
==Description and Significance==
''Chlamydophila pneumoniae'' is a species of bacteria that is known to be a major cause of pneumonia, bronchitis, and atherosclerosis in humans. Similar to viruses, ''Chlamydophila pneumoniae'' is a parasitic organism that cannot reproduce outside of the host cell and is thus dependent on the integrity of the host cell for survival.
''Chlamydophila pneumoniae'' is a species of rod-shaped, gram negative bacteria that is known to be a major cause of pneumonia, bronchitis, respiratory infection, heart disease, and atherosclerosis in humans. It is an airborne bacteria and about 50% of adults in the United States have evidence of previous infection by the age of 20. Similar to viruses, ''Chlamydophila pneumoniae'' is a parasitic organism that cannot reproduce outside of the host cell and is thus dependent on the integrity of the host cell for survival.


==Genome Structure==
==Genome Structure==
The gene sequence of ''Chlamydophila pneumoniae CWL029'', the strain most common in the United States, has been sequenced, as with many others, in 2000. The genome contains 1,230,230 base pairs of circular DNA. Other interesting features?  What is known about its sequence?
The gene sequence of ''Chlamydophila pneumoniae CWL029'', the strain most common in the United States, has been sequenced, as with many others, in 2000. The genome contains 1,230,230 base pairs of circular DNA. There are 1,052 protein genes and 43 RNA genes. There are no plasmids that have been identified as of yet with this species.
Does it have any plasmids?  Are they important to the organism's lifestyle?


==Cell structure and metabolism==
==Cell Structure and Metabolism==
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
''Chlamydophila pneumoniae'' exists in a stationary, non-infectious state inbetween hosts known as a elementary body (EB). Although the elementary body is not infectious, it has the ability to withstand environmental stresses until it reaches a new host where it transforms into a reticulate body (RB). The bacteria undergoes aerobic respiration. ''Chlamydophila pneumoniae'' has an incubation period from 7-21 days within it's host and divides every 2-3 hours.


==Ecology==
==Ecology==
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
''Chlamydophila pneumoniae'' is known and is seen in human hosts all around the world. Many studies have been conducted in the United States and Japan. It was shown that these two isolated strains of ''Chlamydophila pneumoniae'', ''Chlamydophila pneumoniae J138 (Japan)'' and ''Chlamydophila pneumoniae CWL029 (US)'' are very similar to each other in overall function, with only a difference in about 3,600 base pairs.


==Pathology==
==Pathology==
How does this organism cause disease?  Human, animal, plant hosts?  Virulence factors, as well as patient symptoms.
The elementary form of the bacteria is transferred via small water droplets into another host's lungs where it is taken in by endosomes in lung cells. Once the elementary body is taken in, it transforms into the reticulate body, where it replicates itself within the cell. With numerous copies of itself within the cell, the reticulate body reverts back to its elementary form, lyses the cell, and begins the cycle of infection again.
 
''Chlamydophila pneumoniae'' is also known to infect reptiles such as snakes, iguanas, frogs, turtles, and mammals such as koalas.
 
Symptoms include dry cough, fatigue, pain the side of the chest, fever, loss of appetite, and aches.


==Application to Biotechnology==
==Application to Biotechnology==
Does this organism produce any useful compounds or enzymes?  What are they and how are they used?
Although ''Chlamydophila pneumoniae'' is not known to produce any useful enzymes or compounds directly, because of its widespread infection world-wide, antibiotics against this bacteria have been produced indirectly.


==Current Research==
==Current Research==

Revision as of 16:57, 3 May 2007

A Microbial Biorealm page on the genus Chlamydophila pneumoniae

Classification

Higher order taxa

Kingdom: Bacteria; Phylum: Chlamydiae; Order: Chlamydiales; Genus: Chlamydophila; Species: C. pneumoniae; [NCBI]

Species

NCBI: Taxonomy

Chlamydophila pneumoniae

Description and Significance

Chlamydophila pneumoniae is a species of rod-shaped, gram negative bacteria that is known to be a major cause of pneumonia, bronchitis, respiratory infection, heart disease, and atherosclerosis in humans. It is an airborne bacteria and about 50% of adults in the United States have evidence of previous infection by the age of 20. Similar to viruses, Chlamydophila pneumoniae is a parasitic organism that cannot reproduce outside of the host cell and is thus dependent on the integrity of the host cell for survival.

Genome Structure

The gene sequence of Chlamydophila pneumoniae CWL029, the strain most common in the United States, has been sequenced, as with many others, in 2000. The genome contains 1,230,230 base pairs of circular DNA. There are 1,052 protein genes and 43 RNA genes. There are no plasmids that have been identified as of yet with this species.

Cell Structure and Metabolism

Chlamydophila pneumoniae exists in a stationary, non-infectious state inbetween hosts known as a elementary body (EB). Although the elementary body is not infectious, it has the ability to withstand environmental stresses until it reaches a new host where it transforms into a reticulate body (RB). The bacteria undergoes aerobic respiration. Chlamydophila pneumoniae has an incubation period from 7-21 days within it's host and divides every 2-3 hours.

Ecology

Chlamydophila pneumoniae is known and is seen in human hosts all around the world. Many studies have been conducted in the United States and Japan. It was shown that these two isolated strains of Chlamydophila pneumoniae, Chlamydophila pneumoniae J138 (Japan) and Chlamydophila pneumoniae CWL029 (US) are very similar to each other in overall function, with only a difference in about 3,600 base pairs.

Pathology

The elementary form of the bacteria is transferred via small water droplets into another host's lungs where it is taken in by endosomes in lung cells. Once the elementary body is taken in, it transforms into the reticulate body, where it replicates itself within the cell. With numerous copies of itself within the cell, the reticulate body reverts back to its elementary form, lyses the cell, and begins the cycle of infection again.

Chlamydophila pneumoniae is also known to infect reptiles such as snakes, iguanas, frogs, turtles, and mammals such as koalas.

Symptoms include dry cough, fatigue, pain the side of the chest, fever, loss of appetite, and aches.

Application to Biotechnology

Although Chlamydophila pneumoniae is not known to produce any useful enzymes or compounds directly, because of its widespread infection world-wide, antibiotics against this bacteria have been produced indirectly.

Current Research

Enter summaries of the most recent research here--at least three required

References

Shirai, M., Hirakawa, H., Kimoto, M., Tabuchi, M., Kishi, F., Ouchi, K., Shiba, T., Ishii, K., Hattori, M., Kuhara, S., and Nakazawa, T. "Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA." Nucleic Acids Res.(2000) 28:2311-2314.

Everett, K.D., Bush, R.M., Andersen, A.A. "Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms." Int. J. Syst. Bacteriol. (1999) 49:415-440..

Fukushi, H., and Hirai, K. "Restriction fragment length polymorphisms of rRNA as genetic markers to differentiate Chlamydia spp." Int. J. Syst. Bacteriol. (1993) 43:613-617.

Gaydos, C.A., Palmer, L., Quinn, T.C., Falkow, S., and Eiden, J.J. "Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences." Int. J. Syst. Bacteriol. (1993) 43:610-612.


Edited by student of Rachel Larsen and Kit Pogliano