Commercial applications of Rhodopseudomonas palustris

From MicrobeWiki, the student-edited microbiology resource
This is a curated page. Report corrections to Microbewiki.

Introduction

Figure 1. Rhodopseudomonas palustris photographed by Caroline Harwood [1].

Rhodopseudomonas palustris is an Alphaproteobacteria under the genus Rhodopseudomonas. R. palustris is a non-sulfur purple bacterium that is gram-negative with a rod shape. Cells are motile and the organism reproduces by means of budding. R. palustris is found in both aerobic and anaerobic environments including a wide variety of marine and soil ecosystems; coastal marine sediment and waste water treatment facilities for example[1]. Typically non-sulfur purple bacteria are phototrophic, however R. palustris has the capability to switch between different forms of metabolism depending on environmental conditions: photoautotrophy, photoheterotrophy, chemoautotrophy, and chemoheterotrophy. Rhodopseudomonas palustris is the focus of extensive research because it has a multitude of potential metabolic processes. Research focusing on bioremediation and removal of waste is interested in R. palustris for its potential to break down aromatic compounds and waste in polluted environments. Rhodopseudomonas also has the capability to produce hydrogen as a product of nitrogen fixation, which researchers are looking into as a form of alternate energy produced from biofuel. R. palustris has also displayed the capability to generate electricity further increasing the scope of research surrounding the microbe. Climate change induced by global warming and pollution of environments are some of the largest environmental problems facing the modern world. R. palustris is interesting in that it could hold the potential to solving not just one, but both of these serious environmental issues. The extensive research on this microbe presents a possibility for unique commercial applications of the microbe as a source of alternate energy and in waste management and removal.

Metabolism

Figure 2.Metabolic pathways of Rhodopseudomonas palustris. Image credit Larimer, F. et al. [2].

Include some current research, with at least one figure showing data.

Every point of information REQUIRES CITATION using the citation tool shown above.

Biodegredation

Figure 3. Formation and reductive dechlorination of 3-chlorobenzoyl-CoA into the product benezoyl-CoA. A process of R. palustris proposed by Egland, P. et al. [3].

Include some current research, with at least one figure showing data.

Electricity Generation

Include some current research, with at least one figure showing data.

Hydrogen Production

Figure 4. Effects of various nitrogen sources on H2 production, cell growth and acetate consumption. Symbols: No added nitrogen source (open circle), 5 mM glutamate (open square), 5mM NH4Cl (open triangle), and 3 g yeast extract (dark circle). Oh, Y. et al. [4].

Conclusion

References



Authored for BIOL 238 Microbiology, taught by Joan Slonczewski, 2016, Kenyon College.