Halobacterium salinarum: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 11: Line 11:


==Genome structure==
==Genome structure==
Describe the size and content of the genomeHow many chromosomes and plasmids? Circular or linear? Other interesting features?  What is known about its sequence?
 
Two strains of H. salinarum, NRC-1 and R1, have been fully sequenced by Ng et al. and Oesterhelt et al. respectivelyNRC-1 has 2,571,010 base pairs, one large chromosome, and two mini-chromosomes. The large chromosome is very G-C rich (68%) which increases its stability.  This is vital for the extreme environments this halophile is found in. There are also a number of megaplasmids present with 58% G-C. It is reported that strain NRC-1 has 2 megaplasmids and R1 has 2 megaplasmids. The genome encodes for 2,360 predicted proteins for NRC-1 and 2,837 proteins encoded for R1. Proteome comparisons link H. salinarum to Archaea with some similarities to bacteria similar to Gram-positive Bacillus subtilis (5,7).


==Cell structure, metabolism & life cycle==
==Cell structure, metabolism & life cycle==

Revision as of 07:40, 24 October 2011

This student page has not been curated.

A Microbial Biorealm page on the genus Halobacterium salinarum

Classification

Archaea; Euryarchaeota; Halobacteria; Halobacteriales; Halobacteriaceae; Halobacterium; H. salinarium (4)

Description and significance

Halobacterium salinarum is not a bacterium, but is a model organism from the halophilic branch of Archaea (2). It was discovered 80 years ago when isolated from salted fish, long before the proposal for a third domain was put forward in 1978. It is classified as an extremophile due to its ability to survive in environments with very high salt concentrations. It is found in high salt food such as salt pork, marine fish, and sausages. It is also present in hides, hyper-saline lakes, and salterns. Due to their high salinity, these salterns become purple or reddish color with the presence of halophilic Archaea. As a species that colonizes salines, Halobacterium is known for its distinct color and presence in mass cultures seen at Great Salt Lake, Yellowstone National Park, and other places with saline levels around 4M+ (3).

Genome structure

Two strains of H. salinarum, NRC-1 and R1, have been fully sequenced by Ng et al. and Oesterhelt et al. respectively. NRC-1 has 2,571,010 base pairs, one large chromosome, and two mini-chromosomes. The large chromosome is very G-C rich (68%) which increases its stability. This is vital for the extreme environments this halophile is found in. There are also a number of megaplasmids present with 58% G-C. It is reported that strain NRC-1 has 2 megaplasmids and R1 has 2 megaplasmids. The genome encodes for 2,360 predicted proteins for NRC-1 and 2,837 proteins encoded for R1. Proteome comparisons link H. salinarum to Archaea with some similarities to bacteria similar to Gram-positive Bacillus subtilis (5,7).

Cell structure, metabolism & life cycle

Provide a physical and biochemical description of the organism. What kind of organism is it, what does it look like, how is it built, what are its metabolic properties, how can it be identified, what is it's life cycle, &c. In other words, describe the organism from its perspective.

Ecology (including pathogenesis)

Describe its habitat, symbiosis, and contributions to environment. If it is a pathogen, how does this organism cause disease? Human, animal, plant hosts? Describe virulence factors and patient symptoms.

Interesting feature

Describe in detail one particularly interesting aspect of your organism or it's affect on humans or the environment.

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.