Difference between revisions of "Microcystis aeruginosa"

From MicrobeWiki, the student-edited microbiology resource
Jump to: navigation, search
Line 14: Line 14:
 
==Classification==
 
==Classification==
  
Higher order taxa
+
==Higher order taxa==
 
==[[Image:Microcystis_picture.jpg|frame|none]]==
 
==[[Image:Microcystis_picture.jpg|frame|none]]==
 
Prokaryota (Domain); Archaeplastida (Kingdom); Cyanobacteria; (Cyanophyceae (Class); Chroococcales (Order); Microcystaceae (Family); Mycrocystis (Genus); aeruginosa (species)
 
Prokaryota (Domain); Archaeplastida (Kingdom); Cyanobacteria; (Cyanophyceae (Class); Chroococcales (Order); Microcystaceae (Family); Mycrocystis (Genus); aeruginosa (species)

Revision as of 02:36, 22 April 2009

Contents

1 Classification 1.1 Higher order taxa 1.2 Species 2 Description and significance 3 Genome structure 4 Cell structure and metabolism 5 Ecology 6 Current Research 7 References


Classification

Higher order taxa

Microcystis picture.jpg

Prokaryota (Domain); Archaeplastida (Kingdom); Cyanobacteria; (Cyanophyceae (Class); Chroococcales (Order); Microcystaceae (Family); Mycrocystis (Genus); aeruginosa (species)

Species

Mycrocystis aeruginosa

Description and significance

Mycrocystis aeruginosa is a common unicellular colonial cyanobacteria found in fresh water environments. This bacterium produces harmful toxins that create health risks for populations living and harvesting in contaminated areas where M. aeruginosa blooms. Blooms occur when nutrient levels spike in aquatic environments or nutrient levels are selective toward Microcystis aeruginosa.

Genome structure

M. aeruginosa has a single circular genome consisting of 5 842 795 base pairs and has been entirely sequenced by researchers. In the genome are 6312 protein-encoding genes, two sets of rRNA genes, and 42 tRNA genes representing 41 tRNA species. Forty-five percent of the protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes with a hypothetical function, and the remaining 23% had no apparent similarity and code for a unique function.


Cell structure and metabolism

Microcystis aeruginosa is a unicellular, planktonic freshwater cyanobacterium. The existence of intracellular structures, the gas vesicles, provides cells with buoyancy. These hollow, gas-filled structures can keep Microcystis cells close to the surface of water body, where there is optimal light and oxygen for growth. Thus, when the water column is stable, the colonies can accumulate at the water surface and form surface water blooms. Cells range from 2.61 to 5.40μm in diameter, and can be either ovoid or spherical in shape. The extracellular covering of M. aeruginosa was divided into several layers: the cytoplasmic membrane or plasmalemma, the peptidoglycan layer, and the multilayered structure of the cell wall. Microcystis aeruginosa is light dependent and oxygenic, but cells may live under the dark anaerobic conditions for periods of time in eutrophic lakes. Microcystis aeruginosa often form blooms in eutrophic lakes and reservoirs. Surface water blooms can cause anaerobic conditions below the surface in the water and thus make other phytoplankton including M. aeruginosa themselves live in an unfavorable environment. However, M. aeruginosa appeared to be more tolerant to dark anaerobic conditions, which may be important to the dominance of M. aeruginosa in eutrophic lakes.


Ecology

Microcystis eruginosa is one of the most ecologically damaging species due to its prevalence in bodies of water that vary in nutrient loading and its degree of toxicity to aquatic and terrestrial organisms. Cyanobacteria may use a suite of strategies, including morphology and intracellular toxins, to reduce herbivory by filter feeders. Of these traits, toxic secondary metabolites are the most frequently studied, and recent analytical techniques have identified genes responsible for the production of microcystins, a group of toxins produced by M. aeruginosa. Microcystins are cyclic peptides that have been shown to be potent hepatotoxins for rodents and humans and are considered by many to be grazing deterrent compounds. If these compounds are grazing deterrents, it might be expected that intense selective herbivory by freshwater grazers, like cladocerans and invasive mussels, would favor genotypes containing microcystin genes. Selection for these toxic genotypes could thus create cascades with major implications for human health.


Current Research

Dreissena polymorpha, also known as the zebra mussel, is an ecologically disastrous invasive species found in the Great Lakes. Research has observed a correlation between M. aeruginosa blooms and populations of D. polymorpha in places such as the Saginaw Bay in Lake Huron. It was found that through selective filter feeding by the zebra mussels, the M. aeruginosa are rejected in the pseudofeces creating a selective pressure against other more desirable algae. Another research team also discovered that zebra mussels alter the N/P ratio in the water that creates another selective factor to help M. aeruginosa reproduce and thrive. Both of these studies and more are showing a strong relationship between the two destructive species and management of this issue is continuing.

References

Bykova, O., Laursen, A., Bostan, V., Bautista, J., McCarthy, L. 2006. Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth? Science of the Total Environment. 371:362–372


Mlouka, A., K. Comte, A.-M. Castets, C. Bouchier, and N. Tandeau de Marsac. 2004. The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J. Bacteriol. 186:2355-2365


Park, M.-H., Han M.-S., Ahn C.-Y. Ahn, Kim H.-S., Yoon B.-D., Oh H.-M., 2006. Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Letters in Applied Microbiology 43:307–312


Shi, X. L., Kong, F. X., Yu, Y., Yang, Z. 2007. Survival of Microcystis aeruginosa and Scenedesmus obliquus under dark anaerobic conditions. Marine and Freshwater Research, 58, 634–639


Kaneko, T., Nakajima, N., Okamoto, S., Suzuki, I., Tanabe, Y., Tamaoki, M., Nakamura, Y., Kasai, F., Watanabe, A., Kawashima, K., Akiko Ono, Y., Shimizu, Y., Takahashi, C., Minami, C., Fujishiro, T., Kohara, M., Katoh, M., Nakazaki, N., Nakayama, S., Yamada, M., Tabata, S., Watanabe, M.M. 2007. Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843. DNA Research. DNA Res 14: 247-256.


Vanderploeg, H.A., Liebig, J.R., Wayne, W.C., Agy, M.A., Johengen, T.H., Fahnenstiel, G.L., Nalepa, T.F. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J. Fish. Aquat. Sci. 58: 1208-1221.


Wilson, Alan E., Sarnelle, Orlando, Neilan, Brett A., Salmon, Tim P., Gehringer, Michelle M., Hay, Mark E, 2005. Genetic Variation of the Bloom-Forming Cyanobacterium Microcystis aeruginosa within and among Lakes: Implications for Harmful Algal Blooms. Appl. Environ. Microbiol, 71: 6126-6133