R. gnavus: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 27: Line 27:
R.gnavus was found to have a mean genome size of 3.46±0.34 Mbp, with a mean G+C conctent of 42.73±0.33 mol%.
R.gnavus was found to have a mean genome size of 3.46±0.34 Mbp, with a mean G+C conctent of 42.73±0.33 mol%.
R.gnavus' pan-core genome analysis revealed a predicted 28,072 genes, with the core genes making up 3.74% (1051) of that.  The function of the majority of its core genes are not known.
R.gnavus' pan-core genome analysis revealed a predicted 28,072 genes, with the core genes making up 3.74% (1051) of that.  The function of the majority of its core genes are not known.
Edits:
Strain ATCC 29149 of R. gnavus was used for initial classification of this species into the Ruminococcus genus. The genome of strain ATCC 29149 consists of 43% G:C, which is similar to that of other species within the genus Ruminococcus (3). The genome size of strain ATCC 29149 was 3.62 Mb (megabases) (2). There are 3744 genes within its genome (2). A number of the genes in its genome are involved in translation (144), transcription (252), and replication (257) (2). Specific to protein-coding, R. gnavus has genes encoding for capsular polysaccharide biosynthesis protein Cps4J and PapX protein (7). Additionally, 282 genes are associated with carbohydrate transport, which offers insight into R. gnavus’s role in carbohydrate metabolism (7). The same strain (ATCC 29149) was used to reclassify R. gnavus to the Mediterraneibacter genus (2).


==Cell Structure, Metabolism and Life Cycle==
==Cell Structure, Metabolism and Life Cycle==

Revision as of 14:22, 11 December 2023

This student page has not been curated.
Legend. Image credit: Name or Publication.

Classification

Bacteria (Domain); Bacillota (Phylum); Clostridia (Class); Eubacteriales (Order); Lachnospiraceae (Family); Mediterraneibacter (Genus)

Species

[Ruminococcus] gnavus

Note: The National Center for Biotechnology Information indicates with brackets [] that this species may need to be reclassified into a new genus: Mediterraneibacter (1) (2).

Note: named “gnavus” for its high fermentation activity levels (3).

Description and Significance

Ruminococcus gnavus is a Gram-positive obligate anaerobe bacterium discovered first in the human gastrointestinal tract. Despite its name it is actually a part of the genus Mediterraneibacter, although retaining its Ruminococcus name for study purposes.

R. gnavus is considered a part of the normal human gut microbiome in children and adults. It has been suggested that it has a role in priming the gut microbiota in association with standard weight gain velocity in infants.

Ruminococcus gnavus is one of few micorbiota bacterium that persists at a consistent level from infancy to throughout adulthood. Studies have shown that R.gnavus is a key biomarker of health and diseases with certain immune/metabolic properties, making it an important bacterium to understand.

Genome Structure

Ruminococcus gnavus contains circular chromosomes containing 77 RNA coding genes, 3345 protein coding genes, and 3549191 nucleotides. R.gnavus was found to have a mean genome size of 3.46±0.34 Mbp, with a mean G+C conctent of 42.73±0.33 mol%. R.gnavus' pan-core genome analysis revealed a predicted 28,072 genes, with the core genes making up 3.74% (1051) of that. The function of the majority of its core genes are not known.

Edits:

Strain ATCC 29149 of R. gnavus was used for initial classification of this species into the Ruminococcus genus. The genome of strain ATCC 29149 consists of 43% G:C, which is similar to that of other species within the genus Ruminococcus (3). The genome size of strain ATCC 29149 was 3.62 Mb (megabases) (2). There are 3744 genes within its genome (2). A number of the genes in its genome are involved in translation (144), transcription (252), and replication (257) (2). Specific to protein-coding, R. gnavus has genes encoding for capsular polysaccharide biosynthesis protein Cps4J and PapX protein (7). Additionally, 282 genes are associated with carbohydrate transport, which offers insight into R. gnavus’s role in carbohydrate metabolism (7). The same strain (ATCC 29149) was used to reclassify R. gnavus to the Mediterraneibacter genus (2).

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.

Ecology and Pathogenesis

There are a multitude of studies that show a large positive association between Crohn's disease and Ruminococcus gnavus populations. R. gnavus populations skyrocket during flare ups in Crohn's disease patients. R. gnavus produces an inflammatory glucorhamnan polysaccharide that triggers the production of inflammatory cytokines.

Patients experiencing Crohn's disease and an increase in R. gnavus experience symptoms such as abdominal pain, diarrhea, and bloody stool. Patients experiencing extreme symptoms may face inflammation of the eyes, skin, and spine.

In order to survive and thrive within the human gut, R.gnavus evolved mechanisms to adapt to their environment. These are labeled "microbial colonization factors". Ruminococcus gnavus produce antimicrobial peptides called bacteriocins to inhibit the growth of other potential competitors. It has also evolved to produce a range of carbohydrate-active enzymes, allowing them to metabolize complex carbohydrates.

References

Abdugheni, R., Liu, C., Liu, F.-L., Zhou, N., Jiang, C.-Y., Liu, Y., Li, L., Li, W.-J., & Liu, S.-J. (2023, July 24). Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus Gnavus. microbiologyresearch.org. https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001071

Crost, E. H., Coletto, E., Bell, A., & Juge, N. (2023). Ruminococcus gnavus: Friend or foe for human health. FEMS Microbiology Reviews, 47(2). https://doi.org/10.1093/femsre/fuad014

Henke, M. T., Kenny, D. J., Cassilly, C. D., Vlamakis, H., Xavier, R. J., & Clardy, J. (2019, June 25). ruminococcus gnavus, a member of the human gut microbiome associated with crohn’s disease, produces an inflammatory polysaccharide. Proceedings of the National Academy of Sciences of the United States of America. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601261/

Kegg Genome: Ruminococcus Gnavus. (2020). https://www.genome.jp/kegg-bin/show_organism?org=T06719

EDITS: provided by Boston University

(1) Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B. Sharma, S., Soussov, V., Sullivan, J. P., Sun, L. Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford): baaa062. https://doi.org/10.1093/database/baaa062

(2) Togo, A. H., Diop, A., Bittar, F., Maraninchi, M., Valero, R., Armstrong, N., Dubourg, G., Labas, N., Richez, M., Delerce, J., Levasseur, A., Fournier, P., Raoult, D., & Million, M. (2018). Description of mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of ruminococcus faecis, ruminococcus lactaris, ruminococcus torques, ruminococcus gnavus and clostridium glycyrrhizinilyticum as mediterraneibacter faecis comb. nov., mediterraneibacter lactaris comb. nov., mediterraneibacter torques comb. nov., mediterraneibacter gnavus comb. nov. and mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie Van Leeuwenhoek, 111(11), 2107-2128. https://doi.org/10.1007/s10482-018-1104-y

(3) Moore, W. E, Johnson, J. L., & Holdeman, L. V. (1976). Emendation of Bacteroidaceae and butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and ruminococcus. International Journal of Systematic Bacteriology, 26(2), 238–252. https://doi.org/10.1099/00207713-26-2-238

(4) Crost, E. H., Coletto, E., Bell, A., & Juge, N. (2023). Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol Rev, 47(2). https://doi.org/10.1093/femsre/fuad014

(5) Henke, M. T., Kenny, D. J., Cassilly, C. D., Vlamakis, H., Xavier, R. J., & Clardy, J. (2019). Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A, 116(26),12672-12677. https://doi.org/10.1073/pnas.1904099116

(6) Coletto, E., Latousakis, D., Pontifex, M. G., Crost, E. H., Vaux, L., Perez Santamarina, E., Goldson, A., Brion, A., Hajihosseini, M. K., Vauzour, D., Savva, G. M., & Juge, N. (2022). The role of the mucin-glycan foraging Ruminococcus gnavus in the communication between the gut and the brain. Gut microbes, 14(1), 2073784. https://doi.org/10.1080/19490976.2022.2073784

(7) Abdugheni, R., Liu, C., Liu, F.L., Zhou, N., Jiang, C.Y., Liu, Y., Li, L., Li, W.J., Liu, S.J. (2023). Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus. Microb Genom, 9(7), mgen001071. https://doi.org/10.1099/mgen.0.001071

(8) Zhai, L., Huang, C., Ning, Z., Zhang Y., Zhuang, M., Yang, W., Wang, X., Wang, J., Zhang, L., Xiao, H., Zhao, L., Asthana, P., Lam, Y. Y., Willis Chow, C. F., Huang, J., Yuan, S., Chan, K. M., Yuan, C., Lau, J. Y., Wong, H. L. X., & Bian, Z. (2023). Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis. Cell Host & Microbe, 31(1), 33-44.e5. https://doi.org/10.1016/j.chom.2022.11.006

(9) Crost E. H., Le Gall, G., Laverde-Gomez, J. A., Mukhopadhya, I., Flint, H. J., & Juge, N. (2018). Mechanistic Insights Into the Cross-Feeding of Ruminococcus gnavus and Ruminococcus bromii on Host and Dietary Carbohydrates. Front Microbiol, 9, 2558. https://doi.org/10.3389/fmicb.2018.02558

(10) Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J., & Polz, M. F. (2019). A Reverse Ecology Approach Based on a Biological Definition of Microbial Populations. Cell, 178(4), 820–834.e14. https://doi.org/10.1016/j.cell.2019.06.033

(11) Gren, C., Spiegelhauer, M. R., Rotbain, E. C., Ehmsen, B. K., Kampmann, P., & Andersen, L. P. (2019) Ruminococcus gnavus bacteraemia in a patient with multiple haematological malignancies. Access Microbiology, 1(8). https://doi.org/10.1099/acmi.0.000048

(12) Hall, A. B., Yassour, M., Sauk, J., Garner, A., Jiang, X., Arthur, T., Lagoudas, G. K., Vatanen, T., Fornelos, N., Wilson, R., Bertha, M., Cohen, M., Garber, J., Khalili, H., Gevers, D., Ananthakrishnan, A. N., Kugathasan, S., Lander, E. S., Blainey, P., Vlamakis, H., Xavier, R. J., & Huttenhower, C. (2017). A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med, 9, 103. https://doi.org/10.1186/s13073-017-0490-5

(13) Buisson, A., Sokol, H., Hammoudi, N., Nancey, S., Treton, X., Nachury, M., Fumery, M., Hébuterne, X., Rodrigues, M., Hugot, J. P., Boschetti, G., Stefanescu, C., Wils, P., Seksik, P., Le Bourhis, L., Bezault, M., Sauvanet, P., Pereira, B., Allez, M., … & Barnich, N. (2023). Role of adherent and invasive Escherichia coli in Crohn's disease: lessons from the postoperative recurrence model. Gut, 72(1), 39–48. https://doi.org/10.1136/gutjnl-2021-325971

(14) ​​Fuentes, S., Rossen, N. G., van der Spek, M. J., Hartman, J. H., Huuskonen, L., Korpela, K., Salojärvi, J., Aalvink, S., de Vos, W. M., D'Haens, G. R., Zoetendal, E. G., & Ponsioen, C. Y. (2017). Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME J, 11(8), 1877-1889. https://doi.org/10.1038/ismej.2017.44

(15) Henke, M. T., Brown, E. M., Cassilly, C. D., Vlamakis, H., Xavier, R. J., & Clardy, J. (2021). Capsular polysaccharide correlates with immune response to the human gut microbe Ruminococcus gnavus. Proc Natl Acad Sci U S A, 118(20), e2007595118. https://doi.org/10.1073/pnas.2007595118\

Author

Page authored by Chris Blackwell, student of Prof. Bradley Tolar at UNC Wilmington.

Page edited by Olivia Gibson, Olivia Swearingen Ludolph, Samantha Booth, Francesca DiBernardo, Jamie Khans, students of Professor Bhatnager at Boston University.