Rickettsia japonica

From MicrobeWiki, the student-edited microbiology resource
Jump to: navigation, search
This student page has not been curated.

1. Classification

a. Higher order taxa

  • Domain: Bacteria
  • Kingdom: Prokaryote
  • Phylum: Proteobacteria
  • Class: Alphaproteobacteria
  • Order: Rickettsiales
  • Family: Rickettsiaceae
  • Genus: Rickettsia
  • Species: R.japonica

Figure 1: This unrooted phylogeny tree of the Rickettsia genus shows that R.japonica is closely related to Rickettsia rickettsii due to their genetic coding. The majority of the spotted fever group need two hosts and share the same characteristics which correlate with the difference in their genetic code (1).

2. Description and significance

Rickettsia japonica belongs to the genus of Rickettsia, a small Gram-negative genus which are split into spotted fever and typhus groups (2). R.japonica, discovered in 1984, is different from other Rickettsia in that the species has distinct surface polypeptides and antibodies that only react tow R. japonica (3). This strain causes Japanese spotted fever, is highly pathogenic even fatal, and transferable through ticks, lice, and mites (4). R. japonica is an obligate intracellular pathogen with a small genome. As a result, the genomic diversity of this bacteria is low (4). Because of its genome size, many strains of R. japonica have been isolated and analyzed revealing few polymorphisms among the sequences.
R. japonica is pervasive in the Asian and Oceanic geographical regions (5). The bacteria is spread through animals traveling by air and ground specifically ones that are in higher abundance in warm and humid climates (2). Due to the rising influence of global climate change, it is possible that the transmission of this bacteria could continue to spread and evolve (6). There is also the possibility that household pets may become the most abundant victim. Fortunately, a treatment for early stages of Japanese spotted fever consisted of antibiotics, which proved successful and efficient (7).

3. Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?

4. Cell structure

Interesting features of cell structure. Can be combined with “metabolic processes”

5. Metabolic processes

Describe important sources of energy, electrons, and carbon (i.e. trophy) for the organism/organisms you are focusing on, as well as important molecules it/they synthesize(s).

6. Ecology

Habitat; symbiosis; contributions to the environment.

7. Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

8. Current Research

Include information about how this microbe (or related microbes) are currently being studied and for what purpose

9. References

It is required that you add at least five primary research articles (in same format as the sample reference below) that corresponds to the info that you added to this page. [Sample reference] Faller, A., and Schleifer, K. "Modified Oxidase and Benzidine Tests for Separation of Staphylococci from Micrococci". Journal of Clinical Microbiology. 1981. Volume 13. p. 1031-1035.