Sargasso Sea

From MicrobeWiki, the student-edited microbiology resource

Template:Biorealm Niche

This template is a general guideline of how to design your site. You are not restricted to this format, so feel free to make changes to the headings and subheadings and to add additional sections as appropriate.

Introduction

Deep within the Atlantic Ocean, near the Bermuda Triangle, lies a sea shrouded with mystery named the Sargasso Sea. Uncannily calm, the Sargasso Sea was believed to be the demise of sailors. With little wind, ships lay stagnant for days in this “sea of lost ships”, leading to historical accounts of crews going into the sea, but never coming out. Eventually these accounts were mutated into urban legends of whole ships disappearing or broken down vessels roaming this sea manned by skeleton ghost crews and all.(The Sargasso Sea) Realistically speaking though, the Sargasso Sea was believed to be first found by Christopher Columbus and his crew. They named this sea after the seaweed dominating the sea’s surface named Sargassum. They named the sea “Sargaco”, which means grape because Sargassum looks like grapes. (Gladnick, 2008)

Description of Niche

U.S. Fish and Wildlife Service.

Where located?

Physical Conditions?

What are the conditions in your niche? Temperature, pressure, pH, moisture, etc.

Influence by Adjacent Communities (if any)

Is your niche close to another niche or influenced by another community of organisms?

Conditions under which the environment changes

Do any of the physical conditions change? Are there chemicals, other organisms, nutrients, etc. that might change the community of your niche.

Who lives there?

Which microbes are present?

You may refer to organisms by genus or by genus and species, depending upon how detailed the your information might be. If there is already a microbewiki page describing that organism, make a link to it.

Are there any other non-microbes present?

Plants? Animals? Fungi? etc.

Do the microbes that are present interact with each other?

Describe any negative (competition) or positive (symbiosis) behavior

Do the microbes change their environment?

Do they alter pH, attach to surfaces, secrete anything, etc. etc.

Do the microbes carry out any metabolism that affects their environment?

Do they ferment sugars to produce acid, break down large molecules, fix nitrogen, etc. etc.



Current Research

Genetic Analysis: A new way to explore microbial ecology and to discover new species from environmental sample collections

Scientists now believe that genetic material may originate outside its environment and that the physical processes of the Earth or carrier organisms (for example, birds) are their means of travel. A study has recently critically analyzed the Baas-Becking hypothesis, stating that everything is everywhere and the environment selects. This study on comparitive metagenomics takes two very different environmental sequencing projects, the first from Minnesota farm soil and the second from the Sargasso Sea microbes, and compares the sequencing projects to find molecular evidence of a transfer of microbes over distant environments. The theory behind this is that genetic material can be anywhere and doesn’t necessarily mean it will survive in a new environment but, it can still contribute its genome. To determine this, they measured three distinct characteristics, guanine/cytosine (GC) content, oligomer frequency patterns (OFPs), and lastly protein similarity between translated open reading frames in both data sets (Hooper et al., 2008).

Later on, by applying shot-gun sequencing and phylogenetic comparison on uncultured microbes collected from ocean samples, the scientists discovered several previously unknown species that don’t grow in laboratory condition. For example, in 2007, Not et al., showed the discovery of Picoplanktonic protists. By 18s rRNA analysis of different water columns in Sargasso Sea, species in Kingdom Chromalveolata and Rhizaria are found to be the prodominent protista. Among Chromalveolata, Stramenopiles, which exist only in surface euphotic area, and Alveolata, which are discovered from surface to deep sea area, are dominant species. Many of which contain choloroplast; thus living as autotrophs carrying out photosynthesis. Radiolaria is the major species found in Kingdom Rhizaria, they live mainly from 500m thermocline to 3000m deep sea and are heterotrophic zooplanktons. They may be important to ocean biogeochemical cycling and carbon transport (Ghedin & Claverie, 2005). (please refer to microbewiki for details in these species)

Not et al., utilized the similar method, genome sequence analysis and phylogenetic comparison analysis to unveil the existence of Mimivirus relatives in Sargasso Sea, a DNA virus of 0.1 to 0.8 microns in size. They are evolutionarily closer to Mimivirus and exist in large abundance in the collected water samples. The discovery is published in 2005 and further research is needed (Not et al., 2007).

Metabolic and Proteome Analysis – “SAR11 Bacteria and the State of the Ocean”

Dr. Stephen Giovanni and his cohorts have done extensive research on the SAR clade of bacteria. Of special interest to them is the Pelagibacter ubique organism. Currently they are trying to use P.ubique for a few different research interests. First, they are trying to predict the different organic carbon sources used by P.ubique. They are doing this through a method of metabolic reconstruction. Second, they are using mass spectrometry to understand P.ubique’s regulatory responses in regards to environmental factors. By doing this, it will give the researchers insight to the proteomic state of the organism. With this they can then use P.ubique as a proxy to report the biological state of the specific system they are in. Last, a long-term goal is to be able to model the metabolic processes of P.ubique. It is an ideal candidate because it is one of the smallest and simplest known cells. With this information, it could be possible to integrate and optimize metabolic processes to be more efficient during low nutrient periods (Monterey Bay Aquarium Research Institute).

Unique Geological Feature: Floating Plastic

Frequently discovered throughout the western regions of the Sargasso Sea are unusual amounts of broken plastic fragments afloat on the water surfaces, roughly 3500 per square kilometer. Since these plastic fragments have become apart of the sea, various groups of hydroids and diatoms are often found on them. There are concerns regarding the ever increasing plastic production along with its improper disposal methods, which can disrupt ocean life and harm animals that may ingest plasticizers such as polychlorinated biphenyls (PCB’s) (Carpenter & Smith, 1972). Researchers inspecting the Sargasso discovered on average, about 8,000 to 10,000 of floating plastic pieces per square mile (Murphy, 1986). In addition, the Sargasso Sea consists of many plastic fragments due to its slow circulation (Greenpeace International) and its northern region includes one main, circularly moving gyre in which waste and plastic pieces flows to and accumulates (Watson, 2006).

Unique Biological Feature: Antioxidant Activity

The methanol extract of the Sargassum species shows strong antioxidant activity. In addition, this extract possesses noticeable antimicrobial activity against gram-positive and gram-negative bacteria when compared to standard Ampicillin. In this experiment, the crude extract of the Sargassum sp. was evaluated for its antimicrobial activity against three pathogenic bacteria, namely Staphylococcus aureus, Bacillus subtilis, and Eschericia coli, in which S. aureus was among the most common causes of food poisoning. Methanol extract of Sargassum could be utilized as a dependable natural source of antioxidants, a possible food supplement, or as an antimicrobial agent in the pharmaceutical industry. However, the exact mechanism and the compound responsible for the antimicrobial activities are currently unclear and need to be evaluated (Patra et al., 2008).

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by [Sherry Pablo, Hugo Frazao, Patricia Tu, Asa Gardner, Cam Nguyen, Shanice Wang], students of Rachel Larsen