Tea Tree Oil Treatment of MRSA: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 16: Line 16:


==Tea Tree Oil Composition and Chemistry==
==Tea Tree Oil Composition and Chemistry==
<br> Tea tree oil (TTO) is composed of a class of chemicals called terpenes, primarily monoterpenes, sesquiterpenes, and other terpene alcohols.<sup>1</sup> Terpenes are volatile, aromatic hydrocarbons polymers of isoprene C<sub>5</sub>H<sub>8</sub>that are typically soluble with nonpolar solvents. Terinen-4-ol, a monoterpene alcohol which comprises between 30 to 40% of commercially available TTO, is one of nearly 100 components determined by gas chromatography-mass spectrometry.<sup>2</sup> International regulation of TTO composition calls for a relatively high composition of terpinen-4-ol due to its reputed medicinal properties.  
<br> Commercially available tea tree oil (TTO) is actually a composition of nearly 100 chemical compounds determined by gas chromatography-mass spectrometry.<sup>1</sup> TTO is primarily composed of a class of chemicals called terpenes.Terpenes are volatile, aromatic hydrocarbons and are typically soluble with nonpolar solvents. Monoterpenes, sesquiterpenes, and other terpene alcohols dominate this composition.<sup>2</sup> Terpinen-4-ol, a monoterpene alcohol and the presumed antimicrobial component of TTO,comprises between 30 to 40% of commercially available TTO. International regulation of TTO composition calls for a relatively high composition of terpinen-4-ol due to its reputed medicinal properties.  


  <br>
1. Brophy, J. J., N. W. Davies, I. A. Southwell, I. A. Stiff, and L. R. Williams. 1989. Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). J. Agric. Food Chem. 37:1330-1335.


<br> Refs:
2. Carson, C. F., Hammer, K. A., Riley, T. V. Malalueca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties.  Clin. Microbiol. Rev. 19, 50-62 (2008)<br>
 
1. Carson, C. F., Hammer, K. A., Riley, T. V. Malalueca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties.  Clin. Microbiol. Rev. 19, 50-62 (2008)
 
2. Brophy, J. J., N. W. Davies, I. A. Southwell, I. A. Stiff, and L. R. Williams. 1989. Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). J. Agric. Food Chem. 37:1330-1335.


==Antimicrobial Mechanism of Action==
==Antimicrobial Mechanism of Action==

Revision as of 23:18, 24 March 2013

This student page has not been curated.

Introduction


Antibiotic resistance is a growing problem. As more pathogens become resistant to commonly used antibiotics, they become more difficult for medical practitioners to treat. The impotence of common antibiotics underscores the importance of determining alternative anti-microbial treatments. Studies indicate the effectiveness of tea tree oil as treatment for infections of drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus, or MRSA.

Tea tree oil is the essential oil derived from the Australian native plant Melaleuca alternifolia. Tea tree oil has been topically applied for centuries as a folk remedy for acne, lice, athlete's foot, and a number of other conditions. Clinical studies indicate that tea tree oil can also treat skin infection caused by MRSA. MRSA is a type of staph bacteria that is resistant to beta-lactam antibiotics, such as penicillin, amoxicillin, oxacillin, and methicillin. According to the Centers for Disease Control and Prevention (CDC), MRSA is a public health problem as it is commonly contracted in healthcare and community settings. Tea tree oil's bacteriocidal and bacteriostatic effects make this plant extract a plausible addition or supplement to a MRSA treatment plan. Tea tree oil's anti-microbial properties are attributed to its composition of a chemical class known as terpenes, specifically terpinene-4-ol.

Staphyloccocus aureus, also known as staph bacteria or MRSA, is a Gram-positive coccus-shaped anaerobic bacterium. MRSA often colonizes on the skin or nostrils of healthy individuals, and is relatively harmless at these sites. If S. aureus enters the body (e.g., wounds, cuts), it may cause infections. In such instances, the MRSA infection may range from mild (e.g., pimples)to life-threatening (e.g., infection of bloodstream, joints, or bones). MRSA is spread through contact and most commonly contracted in public settings.




This colorized scanning electron micrograph (SEM) depicts a grouping of methicillin resistant Staphylococcus aureus (MRSA) bacteria. Publicly available by the CDC.

Tea Tree Oil Composition and Chemistry


Commercially available tea tree oil (TTO) is actually a composition of nearly 100 chemical compounds determined by gas chromatography-mass spectrometry.1 TTO is primarily composed of a class of chemicals called terpenes.Terpenes are volatile, aromatic hydrocarbons and are typically soluble with nonpolar solvents. Monoterpenes, sesquiterpenes, and other terpene alcohols dominate this composition.2 Terpinen-4-ol, a monoterpene alcohol and the presumed antimicrobial component of TTO,comprises between 30 to 40% of commercially available TTO. International regulation of TTO composition calls for a relatively high composition of terpinen-4-ol due to its reputed medicinal properties.

1. Brophy, J. J., N. W. Davies, I. A. Southwell, I. A. Stiff, and L. R. Williams. 1989. Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). J. Agric. Food Chem. 37:1330-1335.

2. Carson, C. F., Hammer, K. A., Riley, T. V. Malalueca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 19, 50-62 (2008)

Antimicrobial Mechanism of Action


Include some current research in each topic, with at least one figure showing data.

Side Effects


Include some current research in each topic, with at least one figure showing data.

Conclusion


Overall paper length should be 3,000 words, with at least 3 figures.

References

http://www.nhs.uk/conditions/MRSA/Pages/Introduction.aspx

http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0004520/

http://www.nlm.nih.gov/medlineplus/druginfo/natural/113.html

http://epubs.scu.edu.au/cpcg_pubs/482/

http://openi.nlm.nih.gov/detailedresult.php?img=3258290_1472-6882-11-119-1&req=4

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by Karen Leung, a student of Nora Sullivan in BIOL187S (Microbial Life) in The Keck Science Department of the Claremont Colleges Spring 2013.