The Role of Bacteria in the Health Potential of Yogurt

From MicrobeWiki, the student-edited microbiology resource
Yogurt as often seen and consumed.

Introduction

Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.


At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of:
Double brackets: [[
Filename: PHIL_1181_lores.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.
Closed double brackets: ]]

Other examples:
Bold
Italic
Subscript: H2O
Superscript: Fe3+

Yogurt Production

Yogurt production begins by heating the milk to 85-90°C to kill any unwanted bacteria, such as those that can spoil milk or are pathogenic, as well as to denature the milk proteins so that they form more of a gel-like texture by holding in the moisture. This pasteurization step is important both for the consumer and the active cultures that will be added, since it eliminates potential competitors in the environment. Once the milk is cooled to around 42°C, the starter culture is added. These starter cultures most often include Lactobacillus bulgaricus and Streptococcus thermophilus. In fact, these two species are the only cultures required under the Code of Federal Regulations to be present in what can be called "yogurt". Along with the starter culture, probiotics may be added, common ones being Lactobacillus acidophilus, Lactobacillus casei, and Bifido-bacteria. The temperature of the milk is then maintained around 42°C until the pH reaches 4.5, a sign of sufficient lactic acid production. As the name Streptococcus thermophilus suggests, these bacteria are thermophiles that grow the best under elevated temperatures. Thus, the 42°C environment encourages the starter cultures to grow, while it inhibits the growth of non-thermophiles, such as pathogenic bacteria. Caution is needed, however, since L. bulgaricus and S. thermophilius may be thermophiles but are killed at temperatures higher than 55°C. Once a pH of 4.5 is reached, the yogurt is cooled to around 7°C to stop fermentation. It is worth noting however, that fermentation, though at a much slower rate, occurs even at a low temperature and therefore over-fermentation can occur and lead to excess lactic acid and dead bacteria, resulting in a sour, unpalatable yogurt. Thus, even though yogurt is already a product of fermentation, it can technically still spoil.



Introduce the topic of your paper. What microorganisms are of interest? Habitat? Applications for medicine and/or environment?

Section 1


Include some current research, with at least one figure showing data.

Section 2


Include some current research, with at least one figure showing data.

Section 3


Include some current research, with at least one figure showing data.

Conclusion


Overall text length at least 3,000 words, with at least 3 figures.

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Joan Slonczewski for BIOL 238 Microbiology, 2010, Kenyon College.