Trichomonas vaginalis

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Trichomonas vaginalis

Classification

Higher order taxa

Eukaryota; Parabasalidea;Trichomonada;Trichomonadida;Trichomonadidae; NCBI

Species

NCBI: Taxonomy

Trichomonas vaginalis

Description and significance

Describe the appearance, habitat, etc. of the organism, and why you think it is important.

Genome structure

The T. vaginalis genome is the first parabasalid genome to be described. Its genome is about 160 megabases in size with at least 65% of repeats and transposable elements. A core set of ~60,000 protein-coding genes were identified, which means T. vaginalis has one of the highest coding capacities among eukaryotes. Introns were found in 65 genes, transfer RNAs were found for all twenty amino acids, and about 250 ribosomal DNA were identified in this genome. There are six chromosomes in T. vaginalis. An interesting discovery was that the transcription machinery of this eukaryote appeared more metazoan than protozoan. The genome also showed there are 152 cases of possible prokaryote-to-eukaryote lateral gene transfer. The genome helped with the discovery of unknown metabolic pathways, clarification of pathogenic mechanisms, and identification of unknown functions of organelles in T. vaginalis which is discussed in the other sections.1

Cell structure and metabolism

Interesting features of cell structure; how it gains energy; what important molecules it produces.


Ecology

Habitat; symbiosis; contributions to the environment.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Current Research

  • One fairly recent study wanted to investigate if the presence of T. vaginalis (TV) is linked with an increased risk of coinfection with Chlamydia trachomatis (CT) and/or Neisseria gonorrhaeae (NG) in female patients submitted to the Emergency Department (ED) with symptoms consistent with a sexually transmitted disease (STD). These researchers found that there was a strong negative association between the presence of TV and coinfection with CT and/or NG. The presence T. vaginalis actually made it less likely to have coinfection with these two diseases. Based on these results, they concluded that T. vaginalis cannot be used as a reliable marker for Chlamydia and gonorrhea. Therefore, emergency physicians will continue to treat the high-risk patients and call back the lower-risk patients with positive test results for treatment instead of confidently treating all the infections at once.8


  • Besides being transmitted sexually, there have been cases of nonsexual transmission of trichomoniasis such as contaminated douche nozzles, specula, toilet seats, or swimming pool water. The role of public swimming pools in spreading the disease is controversial yet there is little research done. The viability of T. vaginalis in samples of water was reexamined by Pereira-Neves and Benchimol. They concluded that T. vaginalis remains viable and infective in swimming pool water samples for several hours. The survival time is dependent on the cytotoxicity of the strain. The possible transmission of trichomoniasis in public swimming pools may be low.4


  • T. vaginalis infections are usually diagnosed using direct microscopic examination and selective culture media such as Diamond’s medium. These two methods are equally sensitive but they are inefficient in detecting low numbers of parasites, defective parasites or organisms not surviving the transfer to culture medium. In previous studies, T. vaginalis PCR was shown to be more sensitive than culture and direct microscopic examination. However PCR products are more labor intensive and expensive. The goal of this research was to develop a sensitive real-time PCR for the detection of T. vaginalis in gential swabs using TaqMan technology. The results show that the real-time PCR is much more sensitive than the culture and direct microscopy, and the specificity and positive predictive value are also very high (99.9% and 95%). Therefore, it should be the method of choice for the diagnosis of T. vaginalis infections in women with vaginal discharge and men with non-gonococcal urethitis. Compared to the regular PCR, the real-time PCR is easy to perform, less labor-intensive, and takes only a few hours.6

References

1. Carlton, J.M., Hirt, R.P., Silva, J.C., Delcher, A.L., Schatz, M., Zhao, Q., Wortman, J.R., Bidwell, S.L., Alsmark, C.M., and Besteiro, S. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, v. 315, p. 207-211.

2. Hirt, R.P., Noel, C.J., Sicheritz-Ponten, T., Tachezy, J., and Fion, P-L. 2007. Trichomonas vaginalis surface proteins: a view from the genome. Trends in Parasitology, v. 23, p. 540-547.

3. Ofer, K., Gold, D., and Flescher, E. 2008. Methyl jasmonate induces cell cycle block and cell death in the amitochondriate parasite Trichomonas vaginalis. International Journal for Parasitology, v. 38, p. 959-968.

4. Pereira-Neves, A. and Benchimol, M. 2008. Trichomonas vaginalis: In vitro survival in swimming pool water samples. Experimental Parasitology, v. 118, p. 438-441.

5. Petrin, D., Delgaty, K., Bhatt, R., and Garber, G. 1998. Clinical and microbiological aspects of Trichomonas vaginalis. Clinical Microbiology Review, v. 11, p. 300-317.

6. Schirm, J., Bos, P.A.J., Roozeboom-Roelfsema, I.K., Luijt, D.S., and Möller, L.V. 2007. Trichomonas vaginalis detection using real-time TaqMan PCR. Journal of Microbiological Methods, v. 68, p. 243-247.

7. Soper, D. 2004. Trichomoniasis: Under control or undercontrolled? American Journal of Obstetrics and Gynecology, v. 190, p. 281-290.

8. White, M.J., Sadalla, J.K., Springer, S.R., and Counselman, F.L. 2005. Is the presence of Trichomonas vaginalis a reliable predictor of coinfection with Chlamydia trachomatis and/or Neisseria gonorrhoeae in female ED patients? American Journal of Emergency Medicine, v. 23, p. 127-130.


Edited by student of Emily Lilly at University of Massachusetts Dartmouth.