Varicosavirus: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 21: Line 21:


==Genome Structure==  
==Genome Structure==  
Describe the size and content of the genome. How many chromosomes?  Circular or linear? 
''Varicosavirus'' is classified by its 18 nm diameter rods, single-strand RNA, and its two-segmented linear negative sense genome. The first segment, RNA1, has around 7000 nucleotides and the second segment, RNA2, has around 6500 nucleotides. RNA1 encodes for an L protein, and RNA2 encodes for CP, N protein,and the other genes’ functions are unknown.
Other interesting features?  What is known about its sequence?
 
==Cell Structure, Metabolism and Life Cycle==  
==Cell Structure, Metabolism and Life Cycle==  
Interesting features of cell structure; how it gains energy; what important molecules it produces.  
Interesting features of cell structure; how it gains energy; what important molecules it produces.  

Revision as of 03:24, 17 November 2022

This student page has not been curated.
Legend. Image credit: Name or Publication.

Classification

Viruses; Riboviria; Orthonavirae; Negarnaviricota; Haploviricotina; Monjiviricetes; Mononegavirales; Rhabdoviridae; Betarhabdovirinae

Species

NCBI: [1]

Varicosavirus

Description and Significance

Varicosavirus is a nonenveloped, rod-shaped virus with helix symmetry. It infects veins in lettuce leaves and is associated with causing big-vein disease in field-grown lettuce. The type species and only member of the genus is Lettuce big-vein associated virus (LBVaV).

Transmission of the virus is through moist soil via zoospores from an obligate parasitic soil-borne fungus. LBVaV causes deformities in affected leaves that make them unmarketable.

Genome Structure

Varicosavirus is classified by its 18 nm diameter rods, single-strand RNA, and its two-segmented linear negative sense genome. The first segment, RNA1, has around 7000 nucleotides and the second segment, RNA2, has around 6500 nucleotides. RNA1 encodes for an L protein, and RNA2 encodes for CP, N protein,and the other genes’ functions are unknown.

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.

Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

References

[Sample reference] [http://ijs.sgmjournals.org/cgi/reprint/50/2/489 Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.]

Author

Page authored by Shelby Kennedy, student of Prof. Bradley Tolar at UNC Wilmington.

[[Category:Pages edited by students of Bradley Tolar at UNC Wilmington]]