Adhesion Property in Probiotic Strain Lactobacillus acidophius
A probiotic is a product containing viable, defined microorganisms in sufficient numbers, which alter the microflora (by implantation or colonization) in a compartment of the host and by that exert beneficial effects on the host (10). Evidence for the use of probiotics date back thousands of years to the Old Testament where it was cited that Abraham owed his fertility and longevity to the continual consumption of yogurt (2). However, the concept of probiotics did not come to light until the 1900s when zoologist Elie Metchnikoff noted that Bulgarian peasants lived longer, healthier lives due to their regular consumption of fermented milk products (7).
The majority of probiotics are categorized as lactic acid-producing bacteria. As a result of carbohydrate fermentation, these bacteria produce lactic acid, thus their name. Lactic acid probiotics help aid in improving intestinal tract health, enhancing the immune system and reducing risk of certain cancers (7). While the beneficial effects of probiotics has been noted and heavily studied, the mechanisms of probiotics still remain unknown. However, studies have shown strong probiotics are characterized by the ability to adhere strongly to intestinal epithelium (2).
Lactobacilli are favorable in the production of strong probiotics due to their innate properties, which include the ability to adhere to cells, reduce pathogenic adherence, persist and multiply, produce acids, safe and nonpathogenic, and form a balanced flora (8). While all these properties make a strong probiotic, the main focus will be on the adhesion ability of Lactobacillus acidophilus. The ability to adhere to cells is the most important factor in making a good probiotic, because without this the probiotic strain would not be viable. Adhesion to intestinal epithelial cells is necessary for colonization of probiotic strains to prevent their immediate elimination by peristalsis (6).
Mechanisms of Action
The mechanisms of adherence to intestinal epithelial cells of not just Lactobacillus acidophilus but all other probiotic strains still remain largely unknown. This is not due to scientists not having done enough research but rather the conditions to perform proper experiments remains difficult. The major setbacks to understanding the genetic systems responsible for intestinal adhesion of probiotic bacteria are the arduousness in performing human trials, as well as, the complex and kinetic nature of the intestinal environment (3). What scientists have been able to do are comparison trials of untreated bacterial strains and mutant strains and record specific properties that are involved in adhesion.
S-layer
While the function of the S-layer in bacteria has not been deeply studied and understood, the S-layer proteins of lactobacilli have been shown to function as adhesins, cell-surface components of bacteria that facilitate adherence to other cells (4). Comparing untreated bacterial cells and ones treated with LiCl, in order to remove the S-layer, proved the adhesive nature of S-layer proteins in lactobacilli (4).
Additionally, once the S-layer was removed by LiCl, tests showed that coaggregation was significantly reduced. Coaggregation plays a role in competitive exclusion and reduces pathogenic load during mucosal flushing (1). This shows that the S-layer also plays an important role in strengthening the immune system.
Other Cell-Surface Proteins
Mucin-binding protein
The mucosal layer that lines the digestive tract is involved in many important functions. A key function is its ability to protect or inhibit the host from pathogenic bacterial colonization (9). The digestive tract, for probiotics, is a key target for binding and colonization. It is important to understand, whether a strong probiotic strain, such as Lactobacillus, can bind to mucin. Research showed that lactobacilli have the ability to bind to mucin through comparison trials of untreated lactobacilli and adhesion-inhibited lactobacilli (9). This shows Lactobacillus has the ability to deter pathogenic bacterial colonization and aid the immune system. However this study was done on porcine cells rather than human cells. The next step in this research would be to see how effective and beneficial this would be to humans.
Fibronectin-binding protein
Previous research has shown that fibronectin plays an important role in bacterial adherence to epithelial cells (5). To test if fibronectin-binding protein plays a role in lactobacilli adhesion, comparison trials can be set up. An untreated Lactobacillus strain and a mutant strain where the S-layer was removed proved fibronectin plays a role in lactobacilli. In absence of the the S-layer, lactobacilli were unable to adhere to the fibronectin present on epithelial cells (5). However, when the S-layer was present, the lactobacilli were able to bind to the fibronectin (5). This further reinforces the adhesive nature of the S-layer.
R28 Protein
Research has identified that Lactobacillus has an R28 protein, which is expressed in Streptococcus pyogenes (11).
Further Reading
1. Altermann, E., W. M. Russell, M. A. Azcarate-Peril, R. Barrangou, B. L. Buck, O. McAuliffe, N. Souther, A. Dobson, T. Duong, M. Callanan, S. Lick, A. Hamrick, R. Cano, and T. R. Klaenhammer. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 102:3906-3912.
2. Demuth, D. R., Y. Duan, W. Brooks, A. R. Holmes, R. McNab, and H. F. Jenkinson. 1996. Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol. Microbiol. 20:403-413.
3. Law, J., G. Buist, A. Haandrikman, J. Kok, G. Venema, and K. Leenhouts.1995. A system to generate chromosomal mutations in Lactococcus lactiswhich allows fast analysis of targeted genes. J. Bacteriol. 177:7011-7018.
References
1. Beganovic, J., Frece, J., Blazenka, K., Pavunc, A., Habjanic, K., Suskovic, J. (2011), Functinality of the S-layer protein from the probiotic strain Lactobacilus helveticus M92. Journal of Microbiology, 100.1: 43-53. [1]
2. Boyle, R., Robins-Browne, R., Tang, M. (2006), Probiotic use in clinical practice: what are the risks?. The American Journal of Clinical Nutrition. 83.6: 1256-1264. [2]
3. Buck, BL., Altermann, E., Svingerud, T., Klaenhammer, TR. (2005), Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 71: 8344-8351. [3]
4. Frece, J., Kos, B., Svetec, IK., Zgaga, Z., Mrsa, V., Suskovic, J. (2005), Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92. Journal of Applied Microbiology, 98: 285-292. [4]
5. Hynonen, U., Westerlund-Wikstrom, B., Palva, A., Korhonen, T. (2002), Identification by Flagellum Display of an Epithelial Cell- and Fibronectin-Binding Function in the SlpA Surface Protein of Lactobacillus brevis. Journal of Bacteriology, 184.12: 3360-3367. [5]
6. Kos, B., Šušković, J., Vuković, S., Šimpraga, M., Frece, J. and Matošić, S. (2003), Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94: 981–987. [6]
7. Parvez, S., Malik, K.A., Ah Kang, S. and Kim, H.-Y. (2006), Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100: 1171– 1185. [7]
8. Reid, G. (1999), The Scientific Basis for Probiotic Strains of Lactobacillus. Applied and Environmental Microbiology, 65.9: 3763-3766. [8]
9. Rojas, M., Ascencio, F., Conway, P. (2002), Purification and Characterization of a Surface Protein from lactobacillus fermentum 104R That Binds to Porcine Small Intestinal Mucus and Gastric Mucin. Applied and Environmental Microbiology, 68.5: 2330-2336. [9]
10. Schrezenmeir, J., de Vrese, M. (2001), Probiotics, prebiotics, and synbiotics— approaching a definition. The American Journal of Clinical Nutrition, 73.2: 361-364. [10]
11. Stålhammar-Carlemalm, M., Areschoug, T., Larsson, C. and Lindahl, G. (1999), The R28 protein ofStreptococcus pyogenes is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. Molecular Microbiology, 33: 208–219. [11]
Edited by Ashley Barnhill, a student of Nora Sullivan in BIOL168L (Microbiology) in The Keck Science Department of the Claremont Colleges Spring 2015.