Rhodotorula glutinis: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
Line 7: Line 7:
Rhodotorula glutinis, also known as “red yeast” (1), is a species of fungus in the Sporidiobolaceae family that is commonly found in the environment and on human skin (2). It has pink and red colonies due to its ability to produce red-orange carotenoid pigments (3). The species has been the focus of attention in the medical field, as it can persist on plastic surfaces, such as catheters, and potentially cause sepsis in immunocompromised patients (4). Current research focuses on the industrial significance of R. glutinis, including its ability to produce carotenoids, act as a biocatalyst, and aid in biofuel production (3, 5-6). Research suggests that R. glutinis can sustainably produce biofuel precursors from industrial and organic waste, but questions still remain about the cost-effectiveness of large-scale biofuel production utilizing R. glutinis (7, 8).
Rhodotorula glutinis, also known as “red yeast” (1), is a species of fungus in the Sporidiobolaceae family that is commonly found in the environment and on human skin (2). It has pink and red colonies due to its ability to produce red-orange carotenoid pigments (3). The species has been the focus of attention in the medical field, as it can persist on plastic surfaces, such as catheters, and potentially cause sepsis in immunocompromised patients (4). Current research focuses on the industrial significance of R. glutinis, including its ability to produce carotenoids, act as a biocatalyst, and aid in biofuel production (3, 5-6). Research suggests that R. glutinis can sustainably produce biofuel precursors from industrial and organic waste, but questions still remain about the cost-effectiveness of large-scale biofuel production utilizing R. glutinis (7, 8).
=3. Genome structure=
=3. Genome structure=
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?
The Rhodotorula glutinis genome has 20,478,880 nucleotides, and guanine and cytosine (G + C) bases compose 61.9% of the genome. The region of the genome thought to encode genes contains 17,229,291 base pair and there are 3,359 genes coding for 2,817 proteins (9). Some of the major protein groups encoded in the genome play roles in the metabolism of lipids and carotenoids, along with other genes that produce enzymes that are highly relevant to the bio-products and pharmaceutical industries. One example of this is the enzyme phenylalanine ammonia lyase, which can be used to treat phenylketonuria, a disease that is caused by the build-up of the amino acid phenylalanine (10).
 
=4. Cell structure=
=4. Cell structure=
Interesting features of cell structure. Can be combined with “metabolic processes”
Interesting features of cell structure. Can be combined with “metabolic processes”

Revision as of 14:25, 6 December 2021

This student page has not been curated.

1. Classification

a. Higher order taxa

Eukaryota; Fungi; Microbotryomycetes; Sporidiobolales; Sporidiobolaceae; Rhodotorula Include this section if your Wiki page focuses on a specific taxon/group of organisms

2. Description and significance

Rhodotorula glutinis, also known as “red yeast” (1), is a species of fungus in the Sporidiobolaceae family that is commonly found in the environment and on human skin (2). It has pink and red colonies due to its ability to produce red-orange carotenoid pigments (3). The species has been the focus of attention in the medical field, as it can persist on plastic surfaces, such as catheters, and potentially cause sepsis in immunocompromised patients (4). Current research focuses on the industrial significance of R. glutinis, including its ability to produce carotenoids, act as a biocatalyst, and aid in biofuel production (3, 5-6). Research suggests that R. glutinis can sustainably produce biofuel precursors from industrial and organic waste, but questions still remain about the cost-effectiveness of large-scale biofuel production utilizing R. glutinis (7, 8).

3. Genome structure

The Rhodotorula glutinis genome has 20,478,880 nucleotides, and guanine and cytosine (G + C) bases compose 61.9% of the genome. The region of the genome thought to encode genes contains 17,229,291 base pair and there are 3,359 genes coding for 2,817 proteins (9). Some of the major protein groups encoded in the genome play roles in the metabolism of lipids and carotenoids, along with other genes that produce enzymes that are highly relevant to the bio-products and pharmaceutical industries. One example of this is the enzyme phenylalanine ammonia lyase, which can be used to treat phenylketonuria, a disease that is caused by the build-up of the amino acid phenylalanine (10).

4. Cell structure

Interesting features of cell structure. Can be combined with “metabolic processes”

5. Metabolic processes

Describe important sources of energy, electrons, and carbon (i.e. trophy) for the organism/organisms you are focusing on, as well as important molecules it/they synthesize(s).

6. Ecology

Habitat; symbiosis; contributions to the environment.

7. Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

8. Current Research

Include information about how this microbe (or related microbes) are currently being studied and for what purpose

9. References

It is required that you add at least five primary research articles (in same format as the sample reference below) that corresponds to the info that you added to this page. [Sample reference] Faller, A., and Schleifer, K. "Modified Oxidase and Benzidine Tests for Separation of Staphylococci from Micrococci". Journal of Clinical Microbiology. 1981. Volume 13. p. 1031-1035.