Termite gut: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 22: Line 22:


===Do the microbes that are present interact with each other?===
===Do the microbes that are present interact with each other?===
Describe any negative (competition) or positive (symbiosis) behavior
Interaction between the microbes in the termite gut is highly mutual, usually beneficial for both microbes.
Prokaryotes are closely associated with protists as symbionts, either attached to the cell surfaces or live within the cytoplasm or nucleus of the protists. For instance, Treponema spirochete bacteria are attached to the special bracket-like structures on the plasma membrane of mixotricha and contributes to the movement of the host protist known as “motility symbiosis”(3). Treponema also benefits by living on and within the protist, easilly accessible to nutrients H₂ and CO₂ produced by mixotricha and utilize them to synthesize acetate and obtain energy for their own growth as well (5).
 
Another mutual relationship shown between Methanobrevibacter and parabasalids protist, H₂ plus CO₂ produced by protists also can be used by methanogens as energy source but they form methane,CH₄ in this case. Successful elimination of produced H₂ by endosymbiont’s H₂  evolution activity enables the protists to maintain optimal pH and stimulate its decomposition activity (4). These two groups of microorganism interact and work together to digest cellulose and enhance the cellulose fermentation.
 
Although most of the microbes act mutually, there is one exception between the relationship of methanogens and acetogens. Both take up H₂ and CO₂ as their substrates, thus they are likely to be in a compete relationship. Acetogenesis dominates methanogenesis from the same substrate, H₂ plus CO₂, because acetogenesis requires less energy loss of the termite by absorbing acetates but not methane as the energy source.(4)


===Do the microbes change their environment?===
===Do the microbes change their environment?===

Revision as of 05:33, 30 August 2008

Introduction

Description of Niche

Location

Physical Conditions

What are the conditions in your niche? Temperature, pressure, pH, moisture, etc.

Influence by Adjacent Communities (if any)

Is your niche close to another niche or influenced by another community of organisms?

Conditions under which the environment changes

Do any of the physical conditions change? Are there chemicals, other organisms, nutrients, etc. that might change the community of your niche.

Who lives there?

Which microbes are present?

Termite gut exhibits one of the most complex microbial communities, consisting of diverse microorganisms from all three domains of life: Bacteria, Archaea, and Eukarya. By extracting DNA from the gut and comparing sequences of 16S rRNA genes with databases of rRNA sequences, predominant microorganisms in the gut community has been identified as well as their funcitons in the termite gut(1):


Do the microbes that are present interact with each other?

Interaction between the microbes in the termite gut is highly mutual, usually beneficial for both microbes.

Prokaryotes are closely associated with protists as symbionts, either attached to the cell surfaces or live within the cytoplasm or nucleus of the protists. For instance, Treponema spirochete bacteria are attached to the special bracket-like structures on the plasma membrane of mixotricha and contributes to the movement of the host protist known as “motility symbiosis”(3). Treponema also benefits by living on and within the protist, easilly accessible to nutrients H₂ and CO₂ produced by mixotricha and utilize them to synthesize acetate and obtain energy for their own growth as well (5).

Another mutual relationship shown between Methanobrevibacter and parabasalids protist, H₂ plus CO₂ produced by protists also can be used by methanogens as energy source but they form methane,CH₄ in this case. Successful elimination of produced H₂ by endosymbiont’s H₂ evolution activity enables the protists to maintain optimal pH and stimulate its decomposition activity (4). These two groups of microorganism interact and work together to digest cellulose and enhance the cellulose fermentation.

Although most of the microbes act mutually, there is one exception between the relationship of methanogens and acetogens. Both take up H₂ and CO₂ as their substrates, thus they are likely to be in a compete relationship. Acetogenesis dominates methanogenesis from the same substrate, H₂ plus CO₂, because acetogenesis requires less energy loss of the termite by absorbing acetates but not methane as the energy source.(4)

Do the microbes change their environment?

Do they alter pH, attach to surfaces, secrete anything, etc. etc.

Do the microbes carry out any metabolism that affects their environment?

Do they ferment sugars to produce acid, break down large molecules, fix nitrogen, etc. etc.



Current Research

Enter summaries of the most recent research. You may find it more appropriate to include this as a subsection under several of your other sections rather than separately here at the end. You should include at least FOUR topics of research and summarize each in terms of the question being asked, the results so far, and the topics for future study. (more will be expected from larger groups than from smaller groups)

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by [insert your names here!], students of Rachel Larsen